
From Promises to Practice: Evaluating the Private Browsing
Modes of Android Browser Apps

Xiaoyin Liu

School of Cyber Science and

Technology, Shandong University

Qingdao, China

liuxiaoyin@mail.sdu.edu.cn

Wenzhi Li

School of Cyber Science and

Technology, Shandong University

Qingdao, China

wzl2022@mail.sdu.edu.cn

Qinsheng Hou

Shandong University; QI-ANXIN

Technology Research Institute

Qingdao, China

houqinsheng@mail.sdu.edu.cn

Shishuai Yang

School of Cyber Science and

Technology, Shandong University

Qingdao, China

shishuai@mail.sdu.edu.cn

Lingyun Ying
∗

QI-ANXIN Technology Research

Institute

Beijing, China

yinglingyun@qianxin.com

Wenrui Diao
∗

School of Cyber Science and

Technology, Shandong University

Qingdao, China

diaowenrui@link.cuhk.edu.hk

Yanan Li

Beijing University of Posts and

Telecommunications

Beijing, China

YaNanLi@bupt.edu.cn

Shanqing Guo

School of Cyber Science and

Technology, Shandong University

Qingdao, China

guoshanqing@sdu.edu.cn

Haixin Duan

Tsinghua University; Quancheng

Laboratory

Beijing, China

duanhx@tsinghua.edu.cn

ABSTRACT
Private browsing is a common feature of web browsers on desktop

platforms. This feature protects the privacy of users browsing the

Internet and, therefore, is widely welcomed by users. In recent years,

with the popularity of smartphones, the private browsing mode has

been introduced into mobile browsers. However, its deployment on

mobile platforms has not been well evaluated. To bridge the gap, in

this work, we systemically studied the private browsing modes of

Android browser apps. Specifically, we proposed six private rules

for mobile browsers to follow by combining the mobile browsing

features with the previous research on private browsing. Further-

more, we designed an automated analysis framework, BroDroid,

to detect whether mobile browsers violate these rules. Also, with

BroDroid, we evaluated 49 popular browser apps crawled from

Google Play. Finally, BroDroid successfully identified 58 violations,

some of which come from the promised capabilities of the browser.

We reported our discovered issues to the corresponding developers,

and four of them (Yandex Browser, Mint Browser, Web Explorer,

and Net Fast Web Browser) have acknowledged our findings. Our

observation may be the tip of the iceberg, and more efforts should

be put into improving the privacy protections of mobile browsers.

∗
Corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

WWW ’24, May 13–17, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0171-9/24/05

https://doi.org/10.1145/3589334.3645320

CCS CONCEPTS
• Security and privacy → Software and application security.

KEYWORDS
Android; Browser Apps; Private Browsing Mode

ACM Reference Format:
Xiaoyin Liu,Wenzhi Li, QinshengHou, Shishuai Yang, Lingyun Ying,Wenrui

Diao, Yanan Li, Shanqing Guo, and Haixin Duan. 2024. From Promises

to Practice: Evaluating the Private Browsing Modes of Android Browser

Apps. In Proceedings of the ACM Web Conference 2024 (WWW ’24), May
13–17, 2024, Singapore, Singapore. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3589334.3645320

1 INTRODUCTION
Private browsing is a common and popular feature of desktop

browsers. This feature is designed to prevent any information re-

lated to browsing from being stored on the device being used [20]. A

user study shows that 77% of non-technical participants use private

browsing mode to protect their digital traces [28].

In recent years, with the popularity of smartphones, the private

browsing mode has been introduced in mobile browsers, as shown

in Figure 1. For example, the private mode of Chrome is called

the "Incognito Tab" and Edge calls it "InPrivate". In general, when

switching to private mode, users are informed of prompting infor-

mation, or the browser is switched to a dark background, indicating

that browsing behaviors are being protected. Considering that the

mobile phone plays an irreplaceable role in modern life, mobile

browsers may have more opportunities to access user private data

than PC browsers, such as passwords, visited websites, and search

history. In addition, users are usually requested to provide their

data when using a service on the web, making it more possible for

mobile phones to access user data. In 2016, the European Parliament

introduced the General Data Protection Regulation (GDPR), which

1561

https://doi.org/10.1145/3589334.3645320
https://doi.org/10.1145/3589334.3645320
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3589334.3645320&domain=pdf&date_stamp=2024-05-13

WWW ’24, May 13–17, 2024, Singapore, Singapore Xiaoyin Liu, et al.

(a) Chrome (c) Opera(b) Firefox

Figure 1: Private browsing modes of browser apps.

requires companies to protect user data with appropriate security

measures [20]. Thus, mobile private browsing should provide a

reliable service without leaving any trace of browsing activities.

The proper deployment of the private browsing mode on the PC

platform has been widely discussed [13, 16, 20, 27, 32]. However,

due to the enormous differences between PC and mobile platforms,

PC browsers andmobile browsers face different kinds of adversaries,

and the security mechanisms of PC private browsing can not be

applied to mobile platforms directly. For example, the programs

on the PC platform can view the files held by other programs

without restriction. Instead, apps cannot view each other’s files on

Android by default due to the app isolation design. Therefore, even

though both PC private browsing and mobile private browsing both

aim to clear browsing information, they should consider different

technical details. On the other hand, most previous studies are

manual analyses rather than automatic work and only investigated

a minority of specific PC browsers. As a result, the status of private

browsing deployment in mobile browsers is not well understood.

Our work. In this study, we conducted a systematic analysis of

mobile private browsing and focused on the Android platform due

to its high market occupancy on mobile platforms. Specifically, we

proposed six private browsing rules for mobile browsers to follow

by collecting the private browsing features claimed by the browsers

themselves (in Appendix B) and referring to previous related works

about PC browsers. Additionally, after solving a series of technical

challenges (such as UI positioning), we designed an automated

analysis framework, BroDroid, to detect whether mobile browsers

violate these rules.

To give a complete view of private browsing deployments on

mobile platforms in the wild, we conducted a real-world evaluation

on 49 popular Android browsers with over 5M+ installations. In

total, we identified 58 violations, meaning that every browser vio-

lated one rule on average, even though some of them claimed that

their private browsing guaranteed the corresponding capabilities

(3/49, 6.1%). That is, the deployment of private browsing in mobile

browsers still needs to be improved.

Our work not only reflects the general state of mobile private

browsing implementation but also indicates that the awareness of

mobile private browsing needs to be improved. In this case, our

work can benefit developers and communities as it systematically

evaluates mobile private browsing.

Responsible disclosure. We reported our discovered issues to

the corresponding developers, and four of them (Yandex Browser,
Mint Browser, Web Explorer1, and Net Fast Web Browser) have
acknowledged our findings.

Contributions. Here, we list the main contributions of this paper.

• Systematic study.We systematically studied the implementations

of private browsing on the Android platform. Also, we proposed

six rules for mobile browsers to follow.

• Analysis tool. We designed an automated analysis framework

– BroDroid
2
, which can evaluate the performance of private

browsing in Android browsers based on our predefined rules.

• Real-world measurement. With BroDroid, we evaluated 49 pop-

ular browser apps and identified 58 violations. Our study shows

that private browsing of mobile apps is not well implemented,

even with some of the promised features.

2 BACKGROUND AND MOTIVATION
This section covers the Android security mechanisms and private

browsing background. In addition, we also give a real-world exam-

ple of the wrong implementation of private browsing.

2.1 Android Security Mechanisms
Android operating system is a multi-user Linux system where each

app is a different user. It implements the principle of least privi-

lege [22]. That is, an app should never be assigned more privileges

than it needs. Its core security mechanisms are listed below.

App sandbox. Sandbox is an isolated mechanism that promises

an app can not affect other apps outside its boundaries [17]. As the

Android platform employs Linux user-based protection, it uses the

user ID to set up a kernel-level sandbox to isolate apps from each

other [7]. Also, the sandbox guarantees that the app running in it

will not impact resources outside, like the file system and network.

It effectively prohibits apps from breaking the resource another app

uses or causing a data leak.

Permission. User private data and sensitive system resources are

protected by the permission mechanism. By default, each app runs

in a process with a low-privilege user ID, and apps can access only

their own files [19]. If apps want to access system resources, they

must apply for corresponding permissions. For example, system

state and user contact information are restricted for app access due

to the permission mechanism [9].

Private data storage. According to the Android developer doc-

umentation [23], it is recommended that all private user data be

stored in app-specific storage. An app can access its internal files

by default, and others cannot access them (differently from PC

platforms) [24]. When an app is uninstalled, the OS will delete its

corresponding files saved within app-specific storage.

1
Package name is com.explore.web.browser.

2
BroDroid is open-source at https://zenodo.org/doi/10.5281/zenodo.10577792.

1562

https://zenodo.org/doi/10.5281/zenodo.10577792

From Promises to Practice: Evaluating the Private Browsing Modes of Android Browser Apps WWW ’24, May 13–17, 2024, Singapore, Singapore

2.2 Private Browsing
Private browsing is a feature that makes the browser not save

browsing history, cookies, and other user data when a user browses

the websites, regardless of the network protocol (e.g., HTTP and

HTTPS). In addition, others who can access that device cannot see

its user’s activities while activating the private browsing mode.

As the Android has its own web architecture and security mecha-

nisms (e,g., data storage difference), the private browsing techniques

implemented on PC platforms cannot be migrated to mobile plat-

forms directly. Besides, these security mechanisms can protect only

against app-level adversaries, such as malicious apps. Based on

previous studies [13, 38], we propose a new model that considers

attacks not from the perspective of the app, but from the web and

local adversaries.

Threat model. A private browser should not leave any trace of

users’ browsing activities. Although browser apps are protected

by Android security mechanisms, powerful non-app adversaries

can still obtain users’ private browsing activities. Here, we consider

two kinds of adversaries:

• Local adversary: A local adversary can physically access a user’s

mobile phone. From the perspective of digital forensics, these

adversaries can be so powerful that they can get the root privi-

lege through popular tools such as Magisk [35], KingRoot [29],

and Xposed [34]. Then, the data generated by all apps can be

viewed by them. The local adversary aims to uncover the user’s

activities during private browsing.

• Web adversary: A web adversary can control websites that the

user visits [13]. The adversary can view all network traffic con-

tent between the user and the website. The target of the web

adversary is to link a user in private mode to the same user in

normal mode.

2.3 Motivation
The primary requirement of private browsing on any device is

not to save browsing history (website addresses). However, for the

mobile platform (we mainly discussed the Android platform due to

its high occupancy in the mobile market), related files generated

by web browsing are mainly stored in the browser app’s internal

storage after a user ends his private browsing activities, which

is protected by its security mechanisms. Thus, to roundly figure

out whether a browser app saves private browsing history, it is

necessary to examine its internal storage content.

We tested several popular web browsers with private browsing

mode and discovered that some did not live up to their promise of

providing complete privacy. For example, Yandex Browser, which
has 100M+ downloads on Google Play, claimed, "Your history,

searches, and passwords will not be saved" on its private tab page

(viewed as Figure 2 (a)). To verify its claims, we first opened a new

private tab, and in this tab, we visited a website that the browser had

never visited before, and its address is "https://pintofscience.co.uk/"

as Figure 2 (b) shows (as previous work on PC browsers [25]

did), then we stayed at this webpage for a while (around five

seconds). After that, we closed this private tab and continuously

tapped the "back" button of the phone to exit the browser. Af-

ter 30 seconds, we inspected the internal storage of the app and

found that the website we visited was stored in the database file

(a) Incognito (c) Browsing history(b) Private browsing

The URL of the visited site.

Figure 2: Private browsing of Yandex Browser.

"com.yandex.browser/databases/dashboard_service", and the
concrete table name is "hosts_data" (viewed as Figure 2 (c)).

It is important to ensure that mobile browsers can achieve their

private browsing goals, as mobile browsing is more likely to access

users’ private data. Therefore, it is crucial to examine the implemen-

tation of mobile private browsing and evaluate its effectiveness.

3 PRIVATE RULES FOR MOBILE BROWSERS
Weproposed six rules to systematically evaluatewhether the browser

effectively implements private browsing against the two adversaries

listed above. In particular, we proposed these rules based on two

considerations: (1) the private browsing features of PC browsers

discussed in previous works; (2) the private browsing capabilities

promised by the app developers (as shown in Figure 1).

Generally, after a user finishes web browsing (closes private tabs,

private mode, and the browser app), browsers should satisfy the

following rules to prevent threats from a local adversary:
• Rule 1: Do not save browsing history. Browsing history leaks the

addresses of websites users visited, and it can directly reveal the

user’s browsing activity [12, 13, 27, 28, 32, 38, 39].

• Rule 2: Do not save cookies. The purpose of cookies is to add a

state to the HTTP protocol so that the server can retrieve the

previous user. It can not be saved after private browsing to avoid

leakage of user network trace [12, 13, 27, 32, 38, 38, 39].

• Rule 3: Do not save the web cache. Web cache can reduce the

overall network delay by storing files or data on the client side.

For example, the web cache file may change size after a user

browses a picture online. Furthermore, the modified part stores

the data of that picture (maybe not the complete picture). Since

web cache can be sensitive to uncovering a user’s browsing ac-

tivity, it should not be saved [12, 13, 27, 28, 32, 38, 39].

• Rule 4: Do not save forms. Forms are a common tool for sub-

mitting user data, such as user names and passwords. As form

data submitted in private browsing should not be exposed to the

adversary, browsers should not save it [13, 38, 39].

Besides, when a user visits websites, to resist the threat from a

web adversary, private browsing should follow the rules below:

1563

WWW ’24, May 13–17, 2024, Singapore, Singapore Xiaoyin Liu, et al.

• Rule 5: Block third-party cookies. A third-party cookie is a cookie

set by a website other than the one a user is currently on. It can

help third parties create a user profile by collecting a staggering

number of private data, such as the user’s IP address and other

device details. Therefore, a third-party cookie should be blocked

to prevent leakage of user identification information [27].

• Rule 6: Do not share cookies in different modes. This rule prevents
a website from correlating a user in a normal session to the same

user in a private session. For example, browsers should promise

that after a user logins to a website using the username and

password in normal mode, the user should enter this username

and password again to login to the same website in private mode

later instead of directly getting to the web page in login state [27].

Notably, these rules have been widely discussed and accepted [12,

13, 27, 28, 32, 38, 39] and all browsers should follow them.

4 DESIGN OF BRODROID

To detect whether browser apps follow these rules, we designed an

automated analysis tool – BroDroid. Here, we describe its design.

At a high level, BroDroid treats the private browsing imple-

mentations of the browser apps as black boxes. It checks whether

browsers achieve their private browsing goals. Specifically, Bro-

Droid takes browser apps as input and outputs a report of the

detection results corresponding to the pre-defined rules. Figure 3

illustrates the overview workflow of BroDroid, which consists of

four modules, including environment preparation, browsing au-

tomation, network traffic analysis, and local storage analysis.

(1) Environment Preparation (§4.1). First, browsers should be in-

stalled on a test device that already got the root permission.

BroDroid extract their metadata for further use. Additionally,

two test sites should be configured correctly to provide a test

environment for the proposed rules.

(2) Browsing Automation (§4.2). Then, the tested browser is automat-

ically launched and visits our self-built test websites in normal

and private modes driven by BroDroid based on Appium [2].

(3) Network Traffic Analysis (§4.3).Next, BroDroid catches network

traffic throughout the normal browsing and private browsing

process using tcpdump [10]. Traffic packets whose source IP

and destination IP are related to our test website are focused

and analyzed (for Rule 2 and 5-6).
(4) Local Storage Analysis (§4.4). BroDroid analyzes the stored

files related to the browser after completing normal and private

browsing, respectively, to confirm the private data storage status

(for Rule 1-5).

4.1 Environment Preparation
We crawl popular browser apps for BroDroid as input. BroDroid

extracts basic information from AndroidManifest.xml files of apps
using Androguard [1], including launcher activity, package name,

and version number. Then, in the following steps, BroDroid uses

this information to launch browsers.

Test websites. To validate the rules, we set up two websites on the

LAN for browsers visiting. As shown in Figure 4, the test website

(10.102.32.216) provides a login page where users can input their

username and password in the input boxes. The form data will

 Environment

 Preparation

 Local Storage

 Analysis

 Network Traffic

 Analysis

 Browsing

 Automation

Figure 3: Overview of BroDroid.

be posted to the test website once clicking the "submit" button.
Furthermore, we set two pairs of username and password for the

test website to distinguish whether a browser is in normal mode or

private mode: "try" for normal mode and "uvw" for private mode.

The username and password are the same. Additionally, to eliminate

the interference of normal browsing andmake our test environment

closer to the user’s browsing behavior, we introduce a newwebpage

from a general external website for private browsing.

In normal mode, the test website returns an HTML file only con-

taining a "success" text to the browser after logging in. At the same

time, the test website sets the cookie "Flag=1" for this session and

returns it to the browser. In private mode, the test website returns

an HTML file containing an "img" tag except for the "success" text.
Similarly, the test website sets the cookie "FlagPrivate=2". In ad-

dition, this "img" tag has an attribution "src" of which value is the

resource path of another test website (10.102.32.217). It makes

the browser request an image file from this third-party website.

When receiving the request, it sends the image back to the browser

and sets a third-party cookie "FlagThirdParty=3" along with it.

4.2 Browsing Automation
To meet the needs of large-scale analysis for each browser to verify

whether it complies with the above rules, we designed an automated

browsing process, as shown in Figure 4. It simulates the user’s

everyday browsing operations and covers all our proposed rules.

Mainly, it can be divided into the following four operations:

• Ops 1: In normal mode, BroDroid taps the search bar and enters

the test website address to access it. And then, it enters a user-

name and password on the login page and clicks the "submit"
button to post these data. Then, BroDroid drives the browser to

exit itself by continuously sending the "back" command to get to

the phone’s homepage.

• Ops 2: BroDroid repeats the previous operation as the former

step but takes a screenshot when inputting the username.

• Ops 3: BroDroid first switches to private mode and opens the

same website browsed in normal mode. Subsequently, BroDroid

enters a different username and password and taps the "submit"
button. Then, BroDroid visits a newwebpage that does not occur

in normal mode. After a while, BroDroid closes the browser.

• Ops 4: BroDroid repeats the same operation as Ops 3 except

for visiting the new webpage. In addition, it takes a screenshot

when inputting the username.

1564

From Promises to Practice: Evaluating the Private Browsing Modes of Android Browser Apps WWW ’24, May 13–17, 2024, Singapore, Singapore

Challenges. We encountered two challenges in implementing

browsing automation. In particular, to successfully visit test web-

sites in private mode automatically, we need to position the UI

components in the browser to accomplish at least two tasks: (1)

launch the private browsing mode, and (2) access the test website.

However, the UI layouts of browser apps are diverse, which creates

an enormous barrier to implementing automated browsing.

For Task (1), some browsers can launch their private mode by the

corresponding launching activities, like the IncognitoTabLauncher
activity forChrome. However, other browsers cannot launch the pri-
vate mode in this way because the launching activity is restricted

by its attribute (exported="false"), or there is no activity for

browsers to launch this mode at all. Therefore, BroDroid needs to

click the private mode switch to open it, as users do. This operation

is not easy because it is unknownwhether the private switch button

is displayed on the browser’s homepage.

For Task (2), when we tried to drive the browser to visit our test

websites, we found that many browser apps prevent their private

windows from being viewed by the tool we used (i.e., Appium),

directly affecting the UI positioning.

Solutions. To overcome the challenge in Task (1), we first investi-

gated the most popular browser apps to find the commonality of

switching to private mode. Then we proposed empirical solutions

for an automated process to follow, summarized as follows:

• The private mode can be launched in one step: users can tap the

switching button on the home page of the browser, and then it

switches to private browsing mode at once, e.g., Figure 1(b).

• The private mode can be launched in two steps: first, the user

taps the button next to the search bar in the top right corner of

the home page, and then it shows the indicated text, like "New
Incognito Tab". Second, the user goes on to tap it, and a new

private tab starts, e.g., Figure 1(a).

• The private mode can be launched in three steps: first, the user

taps the button that means "tabs view" of the bottom toolbar,

and then more function buttons emerge. Second, the user taps

the text of the private hint so that it can switch to private mode.

At last, the user taps the plus sign (presented as "+" in almost

situation) to open the private browsing tab, then the user can

browse in private mode, e.g., Figure 1(c).

To solve the challenge of Task (2), we studied the reason why

Appium cannot view the layout, and thenwe found that it is because

of apps’ FLAG_SECURE [6] employment. To block this feature, we

utilized the LSPosed framework [8], an ART (Android Runtime)

hooking framework, and rebooted the test device to enable it. After

solving these challenges, we can finally position the UI components

to perform Tasks (1) and (2).

4.3 Network Traffic Analysis
Network traffic analysis mainly detects whether browser apps com-

ply with Rule 2, 5, and 6. BroDroid uses Tshark [11] to analyze

traffic packets associated with the test sites.

Normal mode traffic. BroDroid captures the network packets in

Ops 2. And BroDroid detectsRule 2 in normal browsing according

to these network traffic packets.

Normal Mode

Private Mode Submit

Name
Ops 1

Ops 2

Ops 3

Ops 4

Test WebSite

Ops 4
Link

New Webpage Third-party Test Website

Password

Figure 4: Automated browsing process.

• For Rule 2 (cookie), in Ops 1, after login, the test website sets a

cookie for the browser (i.e., "Flag=1"). If saved, it will be carried
to access the test website the second time of normal browsing.

If "Flag=1" is found, it violates Rule 2.

Privatemode traffic.Different from the normal mode traffic analy-

sis, BroDroid captures the network packets twice in private brows-

ing of Ops 3 and Ops 4, respectively. And we detect Rule 2, 5, and
6 there:

• For Rule 2 (cookie), like normal mode traffic analysis, Bro-

Droid detects whether the cookie got from the first private

browsing (i.e., "FlagPrivate =2") in the traffic packets of Ops

4.

• For Rule 5 (3rdP cookie), when the browser loads images from

a third-party website in Ops 3, the response message will carry a

third-party cookie ("FlagThirdParty=3"). BroDroid searches

for that cookie in the package of Ops 4 to verify if it was saved

and carried.

• For Rule 6 (share cookie), BroDroid searches for the cookie

key-value pair ("Flag=1") in traffic packets of Ops 3 to analyze

whether the browser shares cookies received in normal mode

with private mode.

Overall, for Rule 2, 5, and 6, if those key-value pairs are found,
the browser violates the corresponding rules.

4.4 Local Storage Analysis
Local storage analysis mainly checks whether the browser apps

comply with Rule 1 - 5. BroDroid double-checks Rule 2 and 5
using local storage analysis to support the accuracy of our research

method. We manually analyzed some cases to find the storage

location of user private data. The results indicate the app database

records some browsing information, and some files related to the

web cache are written into the "cache" directory. Thus, we take
database files, "cache" directories into consideration to analyze local
storage. Specifically, BroDroid analyzes the internal storage of the

browser after the end of normal browsing and private browsing.

Database content analysis. User-submitted form data, browsing

history, and cookies are usually stored in database files. For Rule 1,
2, 4, and 5, BroDroid needs to verify the following data in database

files to judge the compliance of the rules in private browsing:

1565

WWW ’24, May 13–17, 2024, Singapore, Singapore Xiaoyin Liu, et al.

• For Rule 1 (history), we need to check if the URL of the new

webpage entered in Ops 3 exists in the database files.

• For Rule 2 (cookie), we need to check if the cookie got from

private browsing (i.e., "FlagPrivate=2") is in the database files.

• For Rule 4 (form), we need to check if the username and pass-

word entered in Ops 4 (i.e., "uvw") exist in the database files.

• For Rule 5 (3rdP cookie), we need to check if the third party’s

cookie ("Flag-ThirdParty=3") exists in the database files.

The browser app violates the corresponding rule if the above

data is found.

Differential analysis. To verify Rule 3 (cache), BroDroid ana-

lyzes the difference between the app storage after normal browsing

and private browsing. In detail, for database files and cache direc-

tories, it compares their file size of normal browsing and private

browsing. As the image in Ops 3 - 4 is around 1.8 MB, it can make an

apparent change in file size if it is not cleared in private browsing.

It is taken as the web cache representative. Empirically, if a file size

changes over 1 MB, it is thought to violate Rule 3.
Screenshot analysis.To further verifyRule 4 (form), a screenshot
in Ops 4 is used to check whether the username in Ops 3 (i.e., "uvw")
is auto-filled or prompted in a drop-down box near the input box

or not. If the full username is identified by character recognition, it

means that the last private browsing saves the form data. Therefore,

the browser disobeys Rule 4.
In addition, to distinguish private browsing features, we apply

the same local storage analysis method to detectRule 2, 4 in normal

browsing, with different key-values "Flag=1" and "try", respectively.

5 EVALUATION RESULTS AND FINDINGS
This section describes how the experiment was conducted and sum-

marizes our findings. Also, a case study is provided in Appendix A.

5.1 Experiment Setup
Implementation of BroDroid.We implemented a prototype of

BroDroid. It was built on Appium, tcpdump, and Tshark. In total,

we implemented it with 2,460 lines of Python code.

Browser app dataset.We collected 60 browser apps onGoogle Play

with over 5 million downloads (the browsers we examined covered

over 97.8% of the Android browser market share [3]). Among them,

four apps not equipped with private browsing mode were filtered

out. Besides, we filtered out two browsers that could not run on

our test device (these browsers crashed at runtime). Finally, the

remaining 54 browser apps make up our dataset.

Execution environment.We took a rooted Pixel 3a mobile phone

with Android 12, as our test device. It was connected to the PC

using a USB interface and turned on the "development option" and
"debugging option". Also, in our experiment, BroDroid runs on

a Windows 11 PC equipped with Intel Core i7 2.50GHz CPU and

16GB RAM. Moreover, our 2 test websites are deployed on 2 Apache

servers, which operating system is Ubuntu 20.04, equipped with

Intel Xeon Gold 6226R CPU 2.90GHz and 256GB RAM.

We installed the listed browser apps on the phone and configured

them, including accepting user privacy and service policies. After

that, the browser apps kept their default configurations.

Table 1: Overall detection results.

Violated Rules Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6
of browser apps 3 17 15 3 4 16

% of browser apps 6.1% 34.7% 30.6% 6.1% 8.2% 32.7%

of promised capabilities 35 11 12 12 11 2

of violated capabilities 1 2 2 0 0 2

5.2 Findings
Our findings are summarized in Table 1, and the detailed results

are listed in Table 4 (in Appendix C). At the app level, BroDroid

successfully evaluated 49 browser apps
3
and discovered 58 viola-

tions from 26 browsers, respectively. At the rule level, few browsers

violate the rules widely known as classic private features: three

browsers save the browsing history (Rule 1, 6.1%)), and three

browsers save form data (Rule 4, 6.1%). Furthermore, some browsers

do not perform web-related behaviors well: Four browsers save

third-party cookies (Rule 5, 8.2%), and 16 browsers share cookies

with private mode (Rule 6, 32.7%). Besides, 17 browsers save the
cookie (Rule 2, 34.7%) in private browsing, and 15 browser apps

save the web cache (Rule 3, 30.6%). These violations can disclose

user identity and privacy. At the promised capabilities level, these

49 browsers claimed 86 capacities corresponding to our rules, and

6 of these capabilities were violated (from 3 browsers, respectively).

Table 1 shows the statistical result of our evaluation, indicating that

mobile private browsing is not quite reliable. The causes of these

problems are various. On the one hand, developers need more sys-

tematic consensus on mobile private browsing, although the same

question has beenwell-discussed on PC platforms [13, 16, 20, 27, 32].

On the other hand, even though some developers pay attention

to enhancing private browsing by means, they may ignore testing

their products or private browsing effectiveness. The details of our

analysis results are as follows:

To Rule 1 (history). Three browser apps (i.e., Maxthon, Samsung
Internet Beta, Yandex Browser, No. 19, 27 and 32 in Table 4.) save the
private browsing history. Generally, no browsing history is the most

basic requirement of private browsing. However, some browsers

still leave the related information, though not intentionally. In our

experiment, the browsers do not save the URL of the newwebpage’s

on purpose, but theymay record the browsing address when describ-

ing other data. For instance,Maxthon recorded the browsing history
in the database file com.mx.browser/databases/mxcommon.db, and
the table name is "mxfavicons". According to this name, we can

infer that this table is used to store the favorite icon information of

websites. This table has three attributes (or column names): host,

favicon, and TOUCH_ICON. We found that the URL is listed in the

"host" column. This violation reveals that browsers do not clear the

browsing history as fine-grained.

ToRule 2 (cookie).We used twomethods to verify this rule, and 17

browser apps failed to pass both. Besides, we observed an interesting

fact contrary to our experience. Ordinarily, in private browsing, a

cookie should be temporarily saved before a current session ends

and deleted along with this session. However, we find Maxthon
does not save the private cookie in local storage immediately after

successful login. In contrast, if staying on the web page for a while,

3
Five browser apps cannot access our test sites. We give the reasons in Section 6.

1566

From Promises to Practice: Evaluating the Private Browsing Modes of Android Browser Apps WWW ’24, May 13–17, 2024, Singapore, Singapore

Figure 5: Cache files of Aloha (Rule 3).

it will do so. In fact, considering the data restoration threat, it is

recommended that browsers not save cookies in private browsing

rather than deleting them later. In addition, for the privacy browser

DuckDuckGo, it is needed to be clicked a specific button on the

toolbar before closing the browser to delete data generated by

browsing; otherwise, it will violate Rule 2. However, it requires the
user to pay more attention to cleaning their browsing data, which

may worsen the user experience.

To Rule 3 (cache). For cache file directories, 15 browser apps

change their cache directory size to over 1 MB after private brows-

ing. In contrast, no database files of these apps change so much. Tak-

ingAloha as an example, to ensure the correctness of the verification

results, we reinstalled this browser app and visited the test website

in private mode. After successful login, we closed the private tab,

private mode, and browser. According to the recorded file paths (i.e.,

data/data/com.aloha.browser/cache/WebView/Default/HTTP
Cache) of our former detection results, we inspected this cache file

using a tool called ChromeCacheView [4]. It showed that some

cache files directly reveal what the user browsed in private mode.

As Figure 5 shows, the cache files of private browsing include the

figure (i.e., 3.jpg) from our third-party test website and anHTML file

named "result.html" that can only be returned in private login. This

finding means the browser did not remove the web cache generated

in private browsing. Besides, while inspecting the local storage

cache files of these 15 browser apps, we found that some HTML

files and images from the new webpage used to verify Rule 1 also

existed. The HTML file name contains the exact website address.

As this address information was stored in the web cache form, we

considered saving the web cache instead of browsing history.

To Rule 4 (form). Three browser apps (i.e., XBrowser, UC Browser,
Seznam.cz, No.31,44 and 45 in Table 4.) saved the form data. For

XBrowser and UC Browser, it can be observed that the login page

of our test website preloads the username we input last time, when

reopening the browser and logging to the test website. For UC
Browser and Seznam.cz, these form data were stored in database

files. However, we searched for the username and password text

in the local storage of XBrowser but failed to find them. Therefore,

we considered its form data was stored as web cache somewhere.

To Rule 5 (3rdP cookie). Our result shows that four browser apps
(APUS, Maxthon, XBrowser, Seznam.cn, No. 5, 19, 31 and 45 in Ta-

ble 4.) save the third-party cookie. We detected this rule using two

kinds of methods: network traffic analysis and local storage analysis,

and none of these browsers can pass either of these methods. More-

over, these results are confirmed in two ways: searching the data-

base files to look for the third-party cookie and printing the cookie

on the third-party test website. We find all these browsers saved the

third-party cookie in their database file, and the concrete file path is

data/data/packagename/app_ webview/Default/Cookies, and

Table 2: Detection results of normal browsing.

Violated Rule Rule 2 Rule 4
of browser app 45 22

% of browser app 97.8% 47.8%

the table name is "cookie". Besides, these browsers all carried that

cookie when asking for the image again, e.g.,Maxthon, showing as
Listing 1.

1 Hypertext Transfer Protocol
2 GET /static /3.jpg HTTP /1.1\r\n
3 Host: 10.102.32.217:5000\r\n
4 ...
5 X-Requested -With: com.mx.browser\r\n
6 Referer: http ://10.102.32.216:3243/\r\n
7 ...
8 Cookie: FlagThirdParty =3\r\n
9 ...
10 [Full request URI: http ://10.102.32.217:5000/ static

/3.jpg]

Listing 1: HTTP message with third-party cookie (Rule 5).

However, it is easy to distinguish and block it because the third-

party cookie has a different domain from the first-party cookie

that roots in the website the user is visiting. In particular, some

browsers, like Chrome, remind the user that blocking third-party

cookies is the default setting when opening a private tab.

To Rule 6 (share cookie). In total, 16 browser apps share cookies

in normal mode with private mode. Taking APUS Browser as an ex-

ample, when it visited the test website in the first private browsing,

one package was captured as Listing 2 shows. In our setting, the

cookie "Flag=1" can only be obtained in normal browsing. How-

ever, if the private mode allows this cookie to be shared, it may

inadvertently provide key information for websites to link a user

in private mode with the same user in normal mode.

1 Hypertext Transfer Protocol
2 Host: 10.102.32.216:3243\r\n
3 ...
4 X-Requested -With: com.apusapps.browser\r\n
5 ...
6 Cookie: Flag =1\r\n
7 ...
8 [Full request URI: http ://10.102.32.216:3243/]

Listing 2: HTTP message with shared cookie (Rule 6).

Normal browsing feature. As we stated before, we also detected

Rules 2 and 4 for 46 browser apps’ normal browsing (three privacy

browser apps are ruled out). The results are shown in Table 2. Com-

paring the normal mode with the private mode, it is evident that the

latter does pay attention to protecting user privacy. Accordingly,

many browsers do not save form data even in normal browsing. It

makes sense that form data is directly related to users’ privacy and

should better not be saved.

Chromium-based browsers.Chromium [5] is a well-known open-

source browser project. Based on the Chromium developer docu-

mentation and our assessment of the essential components of the

browsers, we identified a total of 23 browsers that are based on

Chromium. These browsers are listed in Table 4. In fact, of these 23

browsers, 21 did not violate any rules, including the Chrome fam-

ily of products (3 browsers). However, two browsers (i.e., Yandex

1567

WWW ’24, May 13–17, 2024, Singapore, Singapore Xiaoyin Liu, et al.

Browser andUC Browser) violated one rule, respectively. Therefore,
it is inferred that these two Chromium-based browsers present an

unexpected threat to private browsingwhen customizing their prod-

ucts. On the whole, Chromium-based browsers behaved better than

other browsers. Indeed, the private browsing of non-Chromium-

based browsers is not necessarily flawed. However, achieving right-

on private browsing is not easy.

5.3 Accuracy
False positives.We find two false positive cases in 58 violations

about Brave and Mi Browser, No. 6 and 16 in Table 4) from Rule 3.
These two browsers actually changed the size of recorded cache files

to over 1 MB, and the file path is package/cache/image_manager_
disk_cache. However, those cache files cannot be parsed byChrome-

CacheView. Finally, we determine them as false positives. In addi-

tion, these two browsers do not violate any of the six rules.

False negatives. We found one false negative during our manual

verification. It was about UC Browser from Rule 6. We find UC
Browser does not save any cookies after closing itself. Thus, it failed
to verify Rule 6 due to the disappearance of the cookie in normal

browsing (i.e., Flag=1), and BroDroid incorrectly considered it

complied with this rule because this cookie was not found in Ops

3. However, if we get this cookie in normal mode and switch to

private mode without closing the browser, it will share this cookie

with a new private tab. Therefore, it is considered a false negative.

6 DISCUSSIONS
There are several potential threats to the validity of our study:

Positioning UI elements. Due to significant differences in UI design

among browser apps,BroDroidmay not position someUI elements.

For example, the privacy toggle button of UC browser is a mask

icon, and this mask icon does not contain any text information or

resource-id description, BroDroid cannot handle this situation.

There are a total of four browser apps, and BroDroid evaluated

these browser apps with the help of manual work.

VPN/Tor-based browsers. Five browser apps use VPN services or Tor

network [18] for access to the Internet by default, and their proxy

nodes cannot access our LAN IP addresses. Since there will be an

uncertain delay when accessing public IP addresses, for the sake

of test efficiency, we did not host the test website on the public

network. In addition, the VPN/Tor connections of these browser

apps are not stable in our region, so we did not evaluate them

during the experiment.

Non-uniform privacy data cleaning conditions. There is no uniform

standard for triggering browser apps to clean the data generated

in private modes, of which may be closing the browser apps, clos-

ing private tabs, or exiting the private mode. During our browsing

automation process, simply closing the browser apps does not guar-

antee that they will close the private tabs and exit the private mode.

In addition, there is no uniform method of closing the browser apps

along with closing the private tabs and private mode automatically.

Therefore, we manually close browser apps, close private tabs, and

exit private mode (if an app cannot do this work by our automation

operations) to trigger the data cleaning condition.

7 RELATEDWORK
Private browsing analysis.Wu et al. [39] compared four desktop

and mobile browsers (Chrome, Firefox, Safari, Edge) to study their

private browsing strategies, revealing differential implementations

on both platforms. Aggarwal et al. [13] analyzed the private mode

implementations of several popular desktop browsers and put for-

ward the goals that private mode should achieve. Subsequently,

the works of Lerner et al. [31] and Zhao et al. [41] analyzed the

privacy breach issues caused by third-party browsers’ plugins and

proposed the corresponding identification and improvement ap-

proaches. Wu et al. [38] showed that the browser’s explanation

about private browsing should be clearer to reduce the user’s mis-

understanding. There is also some work focusing on the design and

implementation of privacy browsing frameworks, such as Veil [37],

PrivateDroid [30] and CYCLOSA [33]. Mobile private browsing has

been relatively overlooked compared to its PC counterpart. Our

work focused on mobile private browsing and evaluated large scale

browsers, rather than a few specific popular browsers.

Forensic investigation. Younis et al. [40] detected whether user

artifacts are exposed from web history or email communications in

private and non-private modes on four popular mobile browsers.

Arshad et al. [14] investigated the performance of the Tor privacy

browser for protecting digital browsing traces on Windows 10 and

Android 10 devices. Barghouthy et al. [15] proved that critical pri-

vate data can be found from Orweb (unavailable now) when rooted.

Flowers et al. [21] analyzed the private mode of IE, Chrome, Fire-
fox, and Opera. They found that the user’s browser evidence was

still recoverable in some specific areas. Tsalis et al. [36] found that

some worthless files can also recover users’ browsing history (e.g.,

bookmarks) and proposed using a virtual filesystem to protect pri-

vacy. Hughes et al. [26] analyzed four mainstream browsers (Brave,
Chrome, Edge, and Firefox) and showed that volatile flash memory

might disclose critical private data. In our work, we developed an

automated analysis framework to detect private browsing trace

because it is more suitable for rapidly updated browser apps than

the previous manual work.

8 CONCLUSION
In this work, we systemically studied mobile private browsing and

proposed six rules for browser apps to follow according to the

promised capabilities of private browsing from apps and previous

works on PC platforms. To verify these rules, we designed an au-

tomated device-independent and browser-independent analysis

framework, BroDroid. Finally, we implemented BroDroid and

conducted experiments based on 49 popular browser apps with

more than 5 million downloads. According to the detection reports,

BroDroid discovered 58 violations, demonstrating the effective-

ness of our tool and revealing the improper implementations of

mobile private browsing.

ACKNOWLEDGMENTS
This work was supported by Taishan Young Scholar Program of

Shandong Province, China (Grant No. tsqn202211001), Shandong

Provincial Natural Science Foundation (Grant No. ZR2023MF043),

Xiaomi Young Talents Program, and QAX Student Innovation Fund-

ing Program for Cybersecurity Schools.

1568

From Promises to Practice: Evaluating the Private Browsing Modes of Android Browser Apps WWW ’24, May 13–17, 2024, Singapore, Singapore

REFERENCES
[1] 2023. Androguard. Retrieved October 5, 2023 from https://github.com/androgu

ard/androguard

[2] 2023. Appium. Retrieved October 5, 2023 from https://appium.io/

[3] 2023. browser-market-share. Retrieved January 28, 2024 from https://gs.statcou

nter.com/browser-market-share/mobile/worldwide

[4] 2023. ChromeCacheView. Retrieved October 5, 2023 from http://www.nirsoft.ne

t/utils/chrome_cache_view.html

[5] 2023. Chromium-projects. Retrieved October 5, 2023 from https://www.chromi

um.org/chromium-projects

[6] 2023. Flag-secure. Retrieved October 5, 2023 from https://developer.android.co

m/reference/android/view/WindowManager.LayoutParams#FLAG_SECURE

[7] 2023. Lsposed. Retrieved October 5, 2023 from https://source.android.com/docs/

security/app-sandbox

[8] 2023. Lsposed. Retrieved October 5, 2023 from https://github.com/LSPosed/LSP

osed

[9] 2023. Permission. Retrieved October 5, 2023 from https://developer.android.com/

guide/topics/permissions/overview

[10] 2023. Tcpdump. Retrieved October 5, 2023 from https://www.tcpdump.org/

[11] 2023. Tshark. Retrieved October 5, 2023 from https://www.wireshark.org/docs

/man-pages/tshark.html

[12] Ruba Abu-Salma and Benjamin Livshits. 2020. Evaluating the End-User Expe-

rience of Private Browsing Mode. In Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems (CHI), Honolulu, HI, USA, April 25-30, 2020.

[13] Gaurav Aggarwal, Elie Bursztein, Collin Jackson, and Dan Boneh. 2010. An

Analysis of Private Browsing Modes in Modern Browsers. In Proceedings of the
19th USENIX Security Symposium (USENIX-Sec), Washington, DC, USA, August
11-13, 2010.

[14] Muhammad Raheel Arshad, Mehdi Hussain, Hasan Tahir, Sana Qadir, Faraz

Iqbal Ahmed Memon, and Yousra Javed. 2021. Forensic Analysis of Tor Browser

on Windows 10 and Android 10 Operating Systems. IEEE Access (2021).
[15] Nedaa Al Barghouthy and Andrew Marrington. 2014. A Comparison of Forensic

Acquisition Techniques for Android Devices: A Case Study Investigation of

Orweb Browsing Sessions. In Proceedings of the 6th International Conference on
New Technologies, Mobility and Security (NTMS), Dubai, United Arab Emirates,
March 30 - April 2, 2014.

[16] Hui Cai, Fan Ye, Yuanyuan Yang, Yanmin Zhu, and Jie Li. 2020. Towards Correlated

Queries on Trading of Private Web Browsing History. In Proceedings of the 39th
IEEE Conference on Computer Communications (INFOCOM), Toronto, ON, Canada,
July 6-9, 2020.

[17] Francisco Handrick da Costa, Ismael Medeiros, Thales Menezes, João Victor da

Silva, Ingrid Lorraine da Silva, Rodrigo Bonifácio, Krishna Narasimhan, and Már-

cio Ribeiro. 2022. Exploring the use of static and dynamic analysis to improve the

performance of the mining sandbox approach for android malware identification.

Journal of Systems and Software 183 (2022), 111092.
[18] Roger Dingledine, Nick Mathewson, and Paul Syverson. 2004. Tor: The Second-

generation Onion Router. Technical Report. Naval Research Lab Washington

DC.

[19] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David A. Wagner.

2011. Android Permissions Demystified. In Proceedings of the 18th ACMConference
on Computer and Communications Security (CCS), Chicago, Illinois, USA, October
17-21, 2011.

[20] Xosé Fernández-Fuentes, Tomás F. Pena, and José Carlos Cabaleiro. 2022. Digital

forensic analysis methodology for private browsing: Firefox and Chrome on

Linux as a case study. Computers and Security 115 (2022), 102626.

[21] Cassandra Flowers, Ali Mansour, and Haider M. Al-Khateeb. 2016. Web Browser

Artefacts in Private and Portable Modes: A Forensic Investigation. International
Journal of Electronic Security and Digital Forensics 8, 2 (2016), 99–117.

[22] Google. 2023. Application Fundamentals. Retrieved October 5, 2023 from https:

//developer.android.com/guide/components/fundamentals

[23] Google. 2023. Data-storage. Retrieved October 5, 2023 from https://developer.an

droid.com/training/data-storage

[24] Google. 2023. Safe-data. Retrieved October 5, 2023 from https://developer.andr

oid.com/topic/security/best-practices#safe-data

[25] Graeme Horsman, Ben Findlay, Josh Edwick, Alisha Asquith, Katherine Swannell,

Dean Fisher, Alexander Grieves, Jack Guthrie, Dylan Stobbs, and Peter McKain.

2019. A forensic examination of web browser privacy-modes. Forensic Science
International: Reports (2019).

[26] Kris Hughes, Pavlos Papadopoulos, Nikolaos Pitropakis, Adrian Smales, Jawad

Ahmad, and William J. Buchanan. 2021. Browsers’ Private Mode: Is It What We

Were Promised? Computers 10, 12 (2021), 165.
[27] Collin Jackson, Andrew Bortz, Dan Boneh, and John C. Mitchell. 2006. Protecting

Browser State from Web Privacy Attacks. In Proceedings of the 15th International
Conference on World Wide Web (WWW), Edinburgh, Scotland, UK, May 23-26,
2006.

[28] Ruogu Kang, Laura Dabbish, Nathaniel Fruchter, and Sara Kiesler. 2015. “My Data

Just Goes Everywhere:” User Mental Models of the Internet and Implications for

Privacy and Security. In Proceedings of Eleventh Symposium on Usable Privacy
and Security (SOUPS), 2015.

[29] kingroot studio. 2023. KingRoot. Retrieved October 5, 2023 from https://kingro

otapp.net/

[30] Su Mon Kywe, Christopher Landis, Yutong Pei, Justin Satterfield, Yuan Tian,

and Patrick Tague. 2014. PrivateDroid: Private Browsing Mode for Android. In

Proceedings of the 13th IEEE International Conference on Trust, Security and Privacy
in Computing and Communications (TrustCom), Beijing, China, September 24-26,
2014.

[31] Benjamin S. Lerner, Liam Elberty, Neal Poole, and Shriram Krishnamurthi. 2013.

Verifying Web Browser Extensions’ Compliance with Private-Browsing Mode. In

Proceedings of the 18th European Symposium on Research in Computer Security
(ESORICS), Egham, UK, September 9-13, 2013 .

[32] Donny Jacob Ohana and Narasimha Shashidhar. 2013. Do Private and Portable

Web Browsers Leave Incriminating Evidence? A Forensic Analysis of Residual

Artifacts from Private and Portable Web Browsing Sessions. In Proceedings of
the 2013 IEEE Symposium on Security and Privacy Workshops (IEEE-SPW), San
Francisco, CA, USA, May 23-24, 2013.

[33] Rafael Pires, David Goltzsche, Sonia Ben Mokhtar, Sara Bouchenak, Antoine

Boutet, Pascal Felber, Rüdiger Kapitza, Marcelo Pasin, and Valerio Schiavoni.

2018. CYCLOSA: Decentralizing PrivateWeb Search through SGX-Based Browser

Extensions. In Proceedings of the 38th IEEE International Conference on Distributed
Computing Systems (ICDCS), Vienna, Austria, July 2-6, 2018.

[34] rovo89. 2023. Xposed. Retrieved October 5, 2023 from https://github.com/rovo8

9/Xposed

[35] topjohnwu. 2023. Magisk. Retrieved October 5, 2023 from https://github.com/t

opjohnwu/Magisk

[36] Nikolaos Tsalis, Alexios Mylonas, Antonia Nisioti, Dimitris Gritzalis, and Vasilios

Katos. 2017. Exploring the protection of private browsing in desktop browsers.

Computers and Security 67 (2017), 181–197.

[37] FrankWang, James Mickens, and Nickolai Zeldovich. 2018. Veil: Private Browsing

Semantics Without Browser-side Assistance. In Proceedings of the 25th Annual
Network and Distributed System Security Symposium (NDSS), San Diego, California,
USA, February 18-21, 2018.

[38] Yuxi Wu, Panya Gupta, Miranda Wei, Yasemin Acar, Sascha Fahl, and Blase Ur.

2018. Your Secrets Are Safe: How Browsers’ Explanations Impact Misconceptions

About Private Browsing Mode. In Proceedings of the 2018 International World
Wide Web Conference (WWW), Lyon, France, April 23-27, 2018.

[39] Yuanyi Wu, Dongyu Meng, and Hao Chen. 2017. Evaluating Private Modes

in Desktop and Mobile Browsers and Their Resistance to Fingerprinting. In

Proceedings of 2017 IEEE Conference on Communications and Network Security
(CNS), Las Vegas, NV, USA, October 9-11, 2017.

[40] Lojin Bani Younis, Safa Sweda, and Ahmad Alzu’bi. 2021. Forensics Analysis

of Private Web Browsing Using Android Memory Acquisition. In Proceedings
of the 12th International Conference on Information and Communication Systems
(ICICS).

[41] Bin Zhao and Peng Liu. 2015. Private Browsing Mode Not Really That Private:

Dealing with Privacy Breach Caused by Browser Extensions. In Proceedings of
the 45th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), Rio de Janeiro, Brazil, June 22-25, 2015.

A CASE STUDY
To demonstrate how an inappropriate implementation of private

browsing exposes user privacy, we take Xbrowser as a case.
Xbrowser provides two ways to enter private browsing: one is to

turn on the privacy mode switch, and the other is to create a new

private tab. The former switches all tabs in the browser to private

mode (both existing and new ones), while the latter switches only

new tabs to private mode. When the private mode switch is used

to enter the private browsing state, the contents of the existing

tabs are retained. Then, when the switch is turned off, the contents

of the private tabs are retained and converted to normal contents.

If the user exits the browser at this point, the previous privacy

data will not be automatically cleared. Additionally, no matter how

private browsing is accessed, if the user closes the browser directly

through background management (a common behavior), all privacy

content will be loaded when the browser is relaunched. In contrast,

if the user exits through the browser’s exit button, the browser

will clear the data normally. Figure 6 shows the screenshots taken

while testing Xbrowser. We first opened a website in a private tab,

and in the screenshot, we can see that the page is in private mode;

1569

https://github.com/androguard/androguard
https://github.com/androguard/androguard
https://appium.io/
https://gs.statcounter.com/browser-market-share/mobile/worldwide
https://gs.statcounter.com/browser-market-share/mobile/worldwide
http://www.nirsoft.net/utils/chrome_cache_view.html
http://www.nirsoft.net/utils/chrome_cache_view.html
https://www.chromium.org/chromium-projects
https://www.chromium.org/chromium-projects
https://developer.android.com/reference/android/view/WindowManager.LayoutParams#FLAG_SECURE
https://developer.android.com/reference/android/view/WindowManager.LayoutParams#FLAG_SECURE
https://source.android.com/docs/security/app-sandbox
https://source.android.com/docs/security/app-sandbox
https://github.com/LSPosed/LSPosed
https://github.com/LSPosed/LSPosed
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://www.tcpdump.org/
https://www.wireshark.org/docs/man-pages/tshark.html
https://www.wireshark.org/docs/man-pages/tshark.html
https://developer.android.com/guide/components/fundamentals
https://developer.android.com/guide/components/fundamentals
https://developer.android.com/training/data-storage
https://developer.android.com/training/data-storage
https://developer.android.com/topic/security/best-practices#safe-data
https://developer.android.com/topic/security/best-practices#safe-data
https://kingrootapp.net/
https://kingrootapp.net/
https://github.com/rovo89/Xposed
https://github.com/rovo89/Xposed
https://github.com/topjohnwu/Magisk
https://github.com/topjohnwu/Magisk

WWW ’24, May 13–17, 2024, Singapore, Singapore Xiaoyin Liu, et al.

(a) Before (b) After

This icon represents

the private mode.

Figure 6: Private mode changes to normal mode when re-
opening Xbrowser.

then, we exited the browser without closing the current tab and

reopening it. It can be found that the web page just reloaded, and

the tabs changed to regular tabs.

We believe that browser app developers should not require users

to actively turn off privacy mode before exiting the browser. It

requests browser developers to pay more attention to the logic of

their browser’s private mode implementation and develop products

from the user’s perspective.

B SUPPLEMENTARY DATA
To gain a deep understanding of the design objectives behind the

private browsing functionalities of mobile browsers, we collected

the private mode feature descriptions from the privacy policies or

instructions pertaining to private browsing provided by browsers,

as detailed in Table 3.

C COMPLETE EVALUATION RESULTS
The detailed results of the evaluations are listed in Table 4.

Table 3: Promised private browsing capabilities of mobile browsers.

Package Name Not Promised Capabilities Promised Capabilities
browser4g.fast.internetwebexplorer N/A Incognito mode ensures your privacy. Incognito tab

won’t record any browsing and search history. (Rule 1)

com.aloha.browser Some websites will still be able to track you. N/A

com.alohamobile.browser Some websites will still be able to track you. N/A

com.android.chrome

com.browser.tssomas

com.chrome.beta

com.chrome.dev

com.coccoc.trinhduyet

com.hsv.freeadblockerbrowser

com.mi.globalbrowser

org.adblockplus.browser

Your activity might still be visible to:

·Website you visit

·Your employer or school

·your internet service provider

Downloads,bookmarks and reading list items will be

saved

Browser won’t save the following information:

·Your browsing history (Rule 1)

·Cookies and site data (Rule 2-3)

·Information entered in forms (Rule 4)

Other people who use this device won’t see your

activity

Block third-party cookies (Rule 5)

com.apusapps.browser N/A Incognito mode ensures your privacy. Incognito tab

won’t record any browsing and search history. (Rule 1)

com.brave.browser Even though sites you visit in private tabs are not

saved locally, they do not make you anonymous or

invisible to your ISP, your employer, or to the sites

you are visiting.

Sites you visit in private tabs are not saved locally.

(Rule 1)

com.ecosia.android N/A Ecosia won’t remember the pages you visited, your

search history or your autofill information once you

close a tab. (Rule 1 and Rule 4)

com.jio.web Bookmarks added in incognito mode remains private.

Your activity might be visible to websites you visit and

your internet service provider.

Your search keywords, browsing history are not

recorded. (Rule 1)

com.kaweapp.webexplorer N/A Browse. Erase. Repeat.

com.kiwibrowser.browser N/A N/A

com.mi.globalbrowser.mini Remenber that the files you download and the

bookmarks you add will still be saved.

Your browsing and search history won’t be saved in

incognito mode. (Rule 1)

com.microsoft.emmx Saves Collections, favorites and download (but not

download history).

Does not hide your browsing from your school,

employer, or internet service provider.

Does not give you additional protection from tracking

by default.

Does not add additional protection to what’s available

in normal browsing.

Microsoft Edge will delete your browsing history,

cookies, and site data, as well as passwords, address,

and form data when you close all InPrivate tabs. (Rule

1-4)

Other people using this device won’t see your

browsing activity.

Prevent Microsoft Bing searches from being

associated with you.

1570

From Promises to Practice: Evaluating the Private Browsing Modes of Android Browser Apps WWW ’24, May 13–17, 2024, Singapore, Singapore

Package Name Not Promised Capabilities Promised Capabilities
com.mx.browser N/A You’re incognito.

com.naver.whale N/A Incognito mode allows you to browse the web without

leaving traces of your Internet connect, including your

search history, recent searches, cookies, and

temporary files. (Rule 1-3)

com.opera.browser N/A Opera won’t save the browsing history of your private

tabs. (Rule 1)

com.opera.browser.beta N/A Opera beta won’t save the browsing history of your

private tabs. (Rule 1)

com.opera.gx N/A Opera GX won’t save the browsing history of your

private tabs in private mode. (Rule 1)

com.opera.mini.native N/A Opera Mini won’t save the browsing history of your

private tabs. (Rule 1)

com.opera.mini.native.beta N/A Opera Mini beta won’t save the browsing history of

your private tabs. (Rule 1)

com.opera.touch N/A Opera Touch won’t save the browsing history of your

private tabs in private mode. (Rule 1)

com.sec.android.app.sbrowser.beta N/A N/A

com.talpa.hibrowser N/A Hi Browser will not keep your browsing history. (Rule

1)

com.ume.browser.international N/A N/A

com.ume.browser.northamerica N/A N/A

com.xbrowser.play N/A N/A

com.yandex.browser Please note that you will start being "visible" on social

media and other sites if you log in.

Your history searches, and passwords will not be

saved. (Rule 1 and Rule 4)

fast.explorer.web.browser N/A Incognito browsing prevents any information from

being stored locally. (Rule 1,Rule 2,Rule 3,Rule
4-5,Rule 6)

mark.via.gp N/A You’ve gone incognito.

mobi.mgeek.TunnyBrowser N/A N/A

net.fast.web.browser Downloaded files and new bookmarks will still be

saved to your device.

We won’t remember any history. (Rule 1)

org.easyweb.browser Downloaded files and new bookmarks will still be

saved to your device.

We won’t remember any history. (Rule 1)

org.mozilla.firefox Does not make you anonymous to websites or your

internet service provider make it easier to keep what

you do online private from anyone else who uses this

device.

Firefox clears your search and browsing history from

private tabs when you close them or quit the app.

(Rule 1)

org.mozilla.firefox_beta Does not make you anonymous to websites or your

internet service provider make it easier to keep what

you do online private from anyone else who uses this

device.

Firefox Beta clears your search and browsing history

from private tabs when you close them or quit the app.

(Rule 1)

privacy.explorer.fast.safe.browser Downloaded files and new bookmarks will still be

saved to your device.

We won’t remember any history. (Rule 1)

webexplorer.amazing.speed N/A Incognito mode ensures your privacy. Incognito tab

won’t record any browsing and search history. (Rule 1)

com.explore.web.browser N/A Incognito browsing prevents any information from

being stored locally. (Rule 1,Rule 2,Rule 3-5,Rule 6)
com.UCMobile.intl Files downloaded and bookmarks will be kept. Your browsing history and search history won’t be

recorded. (Rule 1)

cz.seznam.sbrowser N/A N/A

ru.yandex.searchplugin N/A Your search and browsing history isn’t saved. (Rule 1)

com.duckduckgo.mobile.android N/A N/A

nu.tommie.inbrowser N/A You’re now leaving InBrowser. All cache and history

will be deleted. (Rule 1 and Rule 3)

org.mozilla.focus N/A N/A

The Bold indicates that the rule was violated.

1571

WWW ’24, May 13–17, 2024, Singapore, Singapore Xiaoyin Liu, et al.

Table 4: Detection results by browser apps.

No. Package Name App Version Chromium-based Rule1 Rule2 Rule3 Rule4 Rule5 Rule6
1 browser4g.fast.internetwebexplorer 24.10.15 No ✓ # #
2 com.aloha.browser 4.4.4 Yes # # # # #
3 com.alohamobile.browser 4.4.4 Yes # # # # #
4 com.android.chrome 106.0.5249.118 Yes ✓ ✓ ✓ ✓ ✓ #
5 com.apusapps.browser 3.1.10 No ✓ # #
6 com.brave.browser 1.45.120 Yes ✓ # ∗ # # #
7 com.browser.tssomas 6.5 Yes ✓ ✓ ✓ ✓ ✓ #
8 com.chrome.beta 108.0.5359.38 Yes ✓ ✓ ✓ ✓ ✓ #
9 com.chrome.dev 109.0.5382.0 Yes ✓ ✓ ✓ ✓ ✓ #
10 com.coccoc.trinhduyet 111.0.174 Yes ✓ ✓ ✓ ✓ ✓ #
11 com.ecosia.android 7.0.2 Yes ✓ # ✓ ✓ # #
12 com.hsv.freeadblockerbrowser 96.0.2016123590 Yes ✓ ✓ ✓ ✓ ✓ #
13 com.jio.web 3.0.6 Yes ✓ # # # # #
14 com.kaweapp.webexplorer 4.5.2 No # # #
15 com.kiwibrowser.browser Git210216Gen570536402 Yes # # # # # #
16 com.mi.globalbrowser 13.16.1-gn Yes ✓ ✓ ×∗ ✓ ✓ #
17 com.mi.globalbrowser.mini 3.9.3 Yes ✓ # #
18 com.microsoft.emmx 105.0.1418.28 Yes ✓ ✓ ✓ ✓ ✓ #
19 com.mx.browser 6.2.0.1000 No #
20 com.naver.whale 2.7.7.2 Yes ✓ ✓ ✓ # # #
21 com.opera.browser 65.1.3381.61266 Yes ✓ # # # # #
22 com.opera.browser.beta 72.0.3764.67976 Yes ✓ # # # # #
23 com.opera.gx 1.6.7 No ✓ # # # # #
24 com.opera.mini.native 65.1.2254.63284 No ✓ # # # # #
25 com.opera.mini.native.beta 66.0.2254.63780 No ✓ # # # # #
26 com.opera.touch 2.9.9 No ✓ # # # # #
27 com.sec.android.app.sbrowser.beta 19.0.1.2 Yes # # # # #
28 com.talpa.hibrowser v2.5.9.1 No ✓ # # # #
29 com.ume.browser.international 6.0.15 No # # #
30 com.ume.browser.northamerica 6.0.15 No # # #
31 com.xbrowser.play 3.8.3 No # #
32 com.yandex.browser 22.11.0.224 Yes × # # # # #
33 fast.explorer.web.browser 5.9.0 No ✓ × × ✓ ✓ ×
34 mark.via.gp 4.4.5 No # # #
35 mobi.mgeek.TunnyBrowser 12.2.9 No # # # # #
36 net.fast.web.browser 5.1.0 No ✓ # #
37 org.adblockplus.browser 3.2.1 Yes ✓ ✓ ✓ ✓ ✓ #
38 org.easyweb.browser 2.3.0 No ✓ # # #
39 org.mozilla.firefox 105.2.0 No ✓ # # # # #
40 org.mozilla.firefox_beta 106.0b5 No ✓ # # # # #
41 privacy.explorer.fast.safe.browser 2.1.0 No ✓ # #
42 webexplorer.amazing.speed 24.8.14 No ✓ # # #
43 com.explore.web.browser † 3.9.0 No ✓ × ✓ ✓ ✓ ×
44 com.UCMobile.intl † 13.4.0.1306 Yes ✓ # # #∗

45 cz.seznam.sbrowser † 9.1.1 No # #
46 ru.yandex.searchplugin † 22.97 Yes ✓ # # # # #
47 com.duckduckgo.mobile.android ‡ 5.141.0 No # # # # -

48 nu.tommie.inbrowser ‡ 2.43 No ✓ # ✓ # # -

49 org.mozilla.focus ‡ 106.1.0 No # # # # # -

The rule is not promised but is obeyed. The rule is not promised or violated. ✓ The rule is promised and obeyed. × The rule is promised but violated.

∗ The results suffer from false negatives or false positives, which is discussed in Section 5.3.

† The browsing automation operations for these browsers were assisted with manual work. Our automation strategy cannot deal with them.

‡ These browsers are designed for private browsing without normal mode. Therefore, Rule 6 is not suitable for them.

1572

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Android Security Mechanisms
	2.2 Private Browsing
	2.3 Motivation

	3 Private Rules for Mobile Browsers
	4 Design of BroDroid
	4.1 Environment Preparation
	4.2 Browsing Automation
	4.3 Network Traffic Analysis
	4.4 Local Storage Analysis

	5 Evaluation Results and Findings
	5.1 Experiment Setup
	5.2 Findings
	5.3 Accuracy

	6 Discussions
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Case Study
	B Supplementary Data
	C Complete Evaluation Results

