
Large-scale Security Measurements on the
Android Firmware Ecosystem

Qinsheng Hou1,2,3, Wenrui Diao1,2, Yanhao Wang3 (B) , Xiaofeng Liu1,2, Song Liu3, Lingyun Ying3,
Shanqing Guo1,2,6 (B) , Yuanzhi Li3, Meining Nie3, and Haixin Duan4,5

1School of Cyber Science and Technology, Shandong University
2Key Laboratory of Cryptologic Technology and Information Security of Ministry of Education, Shandong University

3QI-ANXIN Technology Research Institute, 4Institute for Network Science and Cyberspace, Tsinghua University
5Tsinghua University-QI-ANXIN Group JCNS, 6Quancheng Laboratory, Jinan, China

houqinsheng@mail.sdu.edu.cn, wangyanhao136@gmail.com, guoshanqing@sdu.edu.cn

ABSTRACT
Android is the most popular smartphone platform with over 85%
market share. Its success is built on openness, and phone vendors
can utilize the Android source code to make products with unique
software/hardware features. On the other hand, the fragmenta-
tion and customization of Android also bring many security risks
that have attracted the attention of researchers. Many efforts were
put in to investigate the security of customized Android firmware.
However, most of the previous work focuses on designing efficient
analysis tools or analyzing particular aspects of the firmware. There
still lacks a panoramic view of Android firmware ecosystem secu-
rity and the corresponding understandings based on large-scale
firmware datasets. In this work, we made a large-scale compre-
hensive measurement of the Android firmware ecosystem security.
Our study is based on 6,261 firmware images from 153 vendors and
602 Android-related CVEs, which is the largest Android firmware
dataset ever used for security measurements. In particular, our
study followed a series of research questions, covering vulnerabili-
ties, patches, security updates, and pre-installed apps. To automate
the analysis process, we designed a framework, AndScanner, to
complete ROM crawling, ROM parsing, patch analysis, and app
analysis. Through massive data analysis and case explorations, sev-
eral interesting findings are obtained. For example, the patch delay
and missing issues are widespread in Android images, say 24.2%
and 6.1% of all images, respectively. The latest images of several
phones still contain vulnerable pre-installed apps, and even the
corresponding vulnerabilities have been publicly disclosed. In ad-
dition to data measurements, we also explore the causes behind
these security threats through case studies and demonstrate that
the discovered security threats can be converted into exploitable
vulnerabilities via 38 newfound vulnerabilities by our framework,
32 of which have been assigned CVE/CNVD numbers. This study
provides much new knowledge of the Android firmware ecosystem
with deep understanding of software engineering security practices.
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1 INTRODUCTION
Nowadays, Android plays a fundamental role in people’s daily
life with an 85% market share of smartphones [33]. Besides smart-
phones, other devices running Android OS can be seen everywhere,
like smartwatches and smart TVs. Such success is largely credited
with the openness of Android, which allows vendors to build their
own customized ROM images for different devices based on AOSP
(Android Open Source Project) [4].

On the other hand, the openness of Android comes with risks.
The large number of customized ROM images built by different
vendors make the Android ecosystem seriously fragmented [45],
which is a big challenge to guarantee the security of the Android
ecosystem. To vendors, the technical abilities and the attitudes
towards security result in the differential security of their ROM
images. For example, although Google releases security patches
to the security bulletins [5] every month, many vendors did not
follow up the patches in time [29], even some vendors just change
the updated date without fixing vulnerabilities [55]. Also, the pre-
installed apps may have security problems. It could be caused by
the phone vendors themselves, like Themes (CVE-2019-15442) in
Samsung devices, which is a vulnerable pre-installed app with an ar-
bitrary app installation vulnerability. Some problems are caused by
the suppliers’ apps, like WfoService (CVE-2019-15378) in a Pana-
sonic device, a pre-installed app from the chip-supplier MediaTek
allowing any app co-located on the device to modify any system
properties.

In recent years, many efforts have been taken to investigate and
improve the Android ecosystem security. For example, Elsabagh



et al. [38] presented FirmScope, an automated analysis system to
uncover different types of vulnerabilities in pre-installed apps. Lell
et al. [49] implemented an app named SnoopSnitch to do binary-
only analysis on Android patches without access to source code.
Zhang et al. [59] investigated the Android kernel patch ecosystem,
revealing the relationship among different parties as well as the
bottleneck in patch propagation. Gamba et al. [41] studied the
ecosystem of pre-installed Android apps and its potential impact
on consumers. However, most of the previous work focuses on
designing efficient analysis tools or analyzing particular aspects
of the firmware. There still lacks a panoramic view of Android
firmware security based on large-scale firmware datasets and the
corresponding understanding behind the current security situations.
In fact, some research questions cannot be solvedwell without large-
scale measurements and numerous case studies. For example, it
has been noted that some phone vendors failed to fix some CVEs
confirmed by Google [49]. However, is the security patch missing
issue a common security risk or a false statement (with rare cases)?
Why do the vendors miss some patches? Which phone models perform
well (or poorly) in the patch missing aspect, and what are the reasons?

Ourwork. In this work, we carried out a large-scale comprehensive
security measurement of the security of Android firmware from
both the system and pre-installed app levels. Also, we try to un-
cover the causes and influences behind the security risks. To guide
our measurement, we refine four important research questions on
Android firmware security, including:

Q1 Do the Android phone vendors follow up the released
AOSP security patches in time? Regular security update
plays an essential role in protecting mobile devices. Android
partners (vendors) are notified of all vulnerability details at
least a month before the public disclosure, and they have
enough time window to update their firmware. However,
whether the vendors indeed follow up the security update
of AOSP in time is still a question. We are also curious about
the causes of the patch delay.

Q2 Whether the patching claims of phone vendors are re-
liable? Though the phone has been updated to the latest
security patch level, there is still no guarantee that the cor-
responding vulnerabilities have been fixed by the vendors
completely. It needs to answer whether the patch missing
issue is a widely existing security practice mistake. The fur-
ther question is why vendors missed some patches provided
by Google, say deliberately or technical issues.

Q3 How many pre-installed apps containing unfixed vul-
nerabilities (CVEs)? In addition to the OS patch missing
issue mentioned by Q2, pre-installed apps also may have
known and unfixed vulnerabilities. That is, the ROM images
contain vulnerable apps with CVEs, which attackers will
quickly exploit. Apart from the detection statistics, we also
want to explore the sources of these vulnerable pre-installed
apps and the actual scope of influence.

Q4 Whether the "non-vulnerable" pre-installed apps are se-
cure? The security risks of pre-installed apps are not limited
to CVEs. Many common configuration mistakes can result in

severe security issues, like exported components and cryp-
tographic misuse. We plan to measure the overall security
situations of pre-installed apps from multiple levels and ex-
plore whether these configuration mistakes can result in
practical security threats.

To answer the proposed questions and explore the reasons be-
hind them, we built a large-scale firmware dataset, covering 6,261
Android firmware images from 153 phone vendors with 443,475
pre-installed APK files (in all unpacked images). To the best of
our knowledge, it is the largest Android firmware dataset ever
used for security measurements. Also, apart from the Android
officially released 411 CVEs, we collected 191 CVEs associated with
pre-installed apps. In particular, we designed an automated analysis
framework, named AndScanner, to execute a series of targeted
measurements and primarily explorations. After massive data anal-
ysis and case studies, finally, we can answer the above research
questions and provide new knowledge of the Android firmware
ecosystem (with deep understandings) to the security practices
in software engineering.In this work, we hope to help consumers
learn more about the security knowledge of Android phones, such
as the timeliness and efficacy of security updates and whether there
are security vulnerabilities in pre-installed applications. Therefore,
they can have security-relevant references when purchasing an
Android phone.

Contributions. Here we summarize our main contributions.
• Large-scale datasets. This study covers 6,261 Android firm-
ware images of 153 phone vendors and 602 related CVEs,
which can provide sufficient representative data support.

• Automated tool.Wedesigned an automated analysis frame-
work,AndScanner, to analyze ROM images, including ROM
crawling, ROM parsing, patch analysis, and app detection.

• Measurements and explorations. Based on massive data
analysis and case explorations, we answered the proposed
questions, and detailed analyses are provided in Section 4.
Also, we responsibly notified the relevant vendors of the
security issues we discovered. Currently, 38 vulnerabilities
from 15 vendors have been confirmed, of which 32 were
assigned CVE/CNVD IDs.

To foster the future study, we will make the source code of
AndScanner and the experiment data available at https://github.c
om/chicharitomu14/AndScanner.

2 BACKGROUND AND METHODOLOGY
In this section, we provide the necessary background of Android
firmware and discuss the methodology of this work.

2.1 Android Firmware
To Android phones, firmware is the system software that provides
low-level control and makes the hardware work. Firmware is usu-
ally stored in particular types of memory, called flash ROM (Read
Only Memory) [48]. Therefore, we sometimes refer to the firmware
of a phone as ROM or ROM image1. Typically, the firmware of an
Android phone contains a bootloader, Linux kernel, Android run-
time framework, radio firmware, and various pre-installed apps [38].

1In this paper, we use “ROM images”, “ROM files”, and “firmware” interchangeably.



Phone vendors may publicly provide the ROM images to facilitate
the users to flash their devices (factory reset or regular OS update).
For example, Google releases the official ROM images of Nexus and
Pixel phones periodically [10, 11].

Format and structure. The firmware is usually released by phone
vendors in a compression format, such as .zip. Sometimes, the
ROM files may be encrypted to prevent reverse engineering. After
unpacking a ROM file, in general, we can find several common
partition images, such as boot.img, vendor.img, recovery.img,
and system.img [23]. They serve different functions for the device.
For example, boot.img contains a kernel image and a ramdisk
image for loading the device before the filesystem mount. Among
them, system.img is the most important one, which contains the
Android framework. It provides the binary files and configuration
files for running the Android OS, such as system apps and libraries.
Also, system.img belongs to file system images, and it can be Yaffs2
format or sparse image format [15].

Pre-installed apps. The pre-installed apps are the apps installed
in the Android firmware. They may be the core system components
provided by Android and the phone vendors, such as Package In-
staller2 for app installing and Mi Cloud3 for Xiaomi cloud service.
Third-party apps (e.g., Twitter) can also be pre-installed due to
commercial cooperation or other reasons. In general, pre-installed
system apps are put in the /system/app and /system/privapp
folders. Third-party apps are put in the /data/app folder.

Customization.Android is an open-source OS designed for mobile
devices, and vendors tend to conduct the secondary development
based on the source code of AOSP (Android Open Source Project),
that is, adding extra features and optimizations to their mobile
products. Due to such a customization process, the system config-
urations and pre-installed apps become quite diverse in different
Android phones (and the corresponding ROM images). Accord-
ing to the previous research [26, 27, 54, 61], ROM customization
may bring new security risks due to the carelessness of developers
or even malware installed on purpose. Research details and more
related work are reviewed in Section 6.

Security update. During system software developments, security
vulnerabilities cannot be avoided. On the other hand, the vendors
should fix the discovered vulnerabilities and provide security up-
dates for users in time. Following such a policy, Google publishes
the details of security vulnerabilities affecting Android devices ev-
ery month [5]. The partners (phone vendors) will be notified before
vulnerability publication. In the ideal case, the vendors should also
provide security updates for their phones by every month.

2.2 Methodology
Nearly all previous work only focuses on some specific aspects of
the custom firmware, like malware and privacy leakage. There still
lacks a deep understanding of its ecosystem and security status,
especially the causes behind the current status. To bridge the gap,
this work aims to conduct a large-scale and comprehensive security
measurement on Android firmware in the wild.

2Package name: com.google.android.packageinstaller
3Package name: com.miui.cloudservice

To answer the research questions proposed in Section 1, our
measurements and analyses should be based on a large-scale dataset
covering diverse ROM images. Also, an automated analysis tool
is needed, that is, the design of AndScanner. It takes the ROM
images as the input and carries out a series of security analyses
on different layers. On the OS level, we focus on the analysis of
security patches. To the aspect of pre-installed apps, apart from the
actual influence of known vulnerabilities, the discovery of unknown
vulnerabilities is also considered, such as attribute misconfiguration
and cryptographic misuse. In addition, to quantify the security
threats, we also should investigate the fundamental reasons behind
the statistical data.

As our work focuses on comprehensive measurements, it will
consider as many types of vulnerabilities as possible. We assume
the attacker has a stronger ability that can induce the victim to
click on the URL, install the app, even physically touch the device.

The main research challenges in this work include 1) confirma-
tion of CVEs related to pre-installed APPs, 2) efficient large-scale
security patch detection, and 3) selection of the detection features of
the pre-installed app security. Section 3 describes the corresponding
solutions to these challenges.

3 DATA COLLECTION & ANALYZER
Since we aim to evaluate the security status of Android firmware
ecosystem, a large amount of ROM images are needed. Besides,
CVE information is also crawled for security feature checking and
correlation analysis. We implemented a crawler to collect the ROM
images and the target CVE data. Meanwhile, we implemented sev-
eral analysis tools to facilitate our large-scale security measurement.
This section illustrates the data source and detailed design of And-
Scanner, which contains the Crawler, ROM Parser, Patch Analyzer,
and App Analyzer. The overall workflow is illustrated in Figure 1.

3.1 Crawler

ROM images. Most major phone vendors, such as Google and
Xiaomi, release their ROM images on their official websites to facil-
itate users downloading. In some cases, the users need to recover
their bricked phones with the factory images. However, some ven-
dors, like Samsung and Huawei, do not directly provide the public
downloading URLs for their firmware. The images only can be ob-
tained through some official support channels. In such cases, we try
to construct all possible URLs based on a legal downloading URL by
changing some key parameters. In addition, we also obtain the data
collected by another open-source repository, Android Dumps [2], a
public project hosting phone images. This project contains images
from small phone vendors, increasing the scale and diversity of
our dataset. For the soundness of Android Dumps, we verified the
unpacked files of our crawling firmware with those of the identical
firmware in Android Dumps to ensure the integrity of firmware
images in Android Dumps. In addition, we reproduced the open-
source tool [36] of Android dumps and verified the accuracy of the
unpacking results.

CVE data. As described previously, the CVE data is related to mul-
tiple security feature analysis and correlation analysis. The initial
research challenge in this work is to establish a link between CVEs
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Figure 1: Workflow of AndScanner.

and pre-installed apps. Through traversing all CVE data from 2009
to 2020, we collected the basic data at first. That is, CVE IDs, dis-
closed time, and descriptions are collected from the official CVE
website [9]. The CPE (common platform enumeration) information,
like vulnerable app names and versions, are collected from the NVD
website [18]. Then, we match the CPE information with the meta-
data of pre-installed apps (e.g., app name, and version), collected
from ROM Parser (Subsection 3.2), to filter out the pre-installed
apps related CVEs. However, as the irregular formats of some CVE
submissions, we indeed missed some CVEs. Hence, we conduct
the filtering again by manually check each CVE and remove the
duplicate and irrelevant CVEs.

3.2 ROM Parser
As the critical step before security measurement, accurate ROM
image parsing is quite essential. The ROM parser module achieves
such a target. That is, in this step, unpacked image files and the
corresponding firmware metadata are outputted. In our implemen-
tation, two sub-steps are involved, ROM unpacking and data extrac-
tion. First, the ROM parser unpacks the ROM image and obtains
the individual file-system images for subsequent security analysis.
Next, multiple kinds of firmware metadata will be extracted from
the unpacked files.

ROM unpacking. As described in Subsection 2.1, firmware is usu-
ally released in a standard compression format. It is easy to handle
this case. To the encrypted ROM images, we use some dynamic
methods, such as ADB (Android Debug Bridge) debugging, to obtain
the decryption key from the running system. To the uncompressed
Android ROM files, we still need to unpack the partition images,
especially system.img. If the vendors store the images using the of-
ficial sparse image format, it can be resolved with the "official" tool,
simg2img [31]. The other vendors may use their private formats or
compression formats to store the factory images or OTA images.
We identify the format of image files based on their file extension
and format features first, then use the corresponding public parsing
tools [44] [58] [6] [35] [56] to unpack them.

Data extraction. After unpacking the images, we generate the
identification for the ROM image and each internal file. We ex-
tract the metadata from each ROM image based on their property
files (i.e., build.PROP) for sub-process analysis, including Finger-
print, Android version, Build time, Security patch level, Model,
and Vendor. Fingerprint is used as the identifier of a ROM im-
age. Android version represents the ROM image’s Android OS
version. Build time is the build time of a ROM image, such as

“Thu Jun 29 18:12:59 UTC 2017”. Security patch level rep-
resents the time of a device’s latest security patch update, such as
‘2017-08-05”. Model represents the corresponding device model.
Vendor represents the ROM image’s vendor. The internal files con-
sist of two types of files: pre-installed application packages (APKs)
and binary executables. For the internal files, we use a tuple <File
MD5, vendor, ROM fingerprint> to mark the source of this file.

3.3 Patch Analyzer
Since patches may originate from more than one upstream kernel
(e.g., Linux, AOSP, and Qualcomm), the propagation usually takes
multiple steps to reach the OEM vendors [59] finally. At the same
time, vendor’s patch claims may be unreliable [49]. Hence, we need
to verify the completeness and effectiveness of the security patches
on a ROM sample independently. It is also a critical step to evaluate
the ROMfile’s security status. The PatchAnalyzermodule generates
reports about whether an Android firmware has been patched in
time and whether the vulnerabilities indeed have been fixed on
the firmware. In summary, this module is designed to answer Q1
& Q2 and explore the fundamental reasons behind them with the
Patch Delay Analysis Module (forQ1) and the Patch Missing Analysis
Module (for Q2).

Based on the firmware’s metadata collected in Subsection 3.2,
the Patch Delay Analysis Module used the build time and security
patch level to check whether one firmware followed up the released
AOSP security patches in time. The value of the build time minus
the security patch is defined as the patch delay time. For example,
in a ROM image, if the build time is 2019-09-13 (UTC time) and
the security patch date is 2019-08-05, so we can calculate the delay
as 39 𝑑𝑎𝑦𝑠/(30 𝑑𝑎𝑦𝑠/𝑝𝑒𝑟 𝑚𝑜𝑛𝑡ℎ) = 1.3 months (rounded down to
1 month). Based on Google’s recommendation [3], we decided 30
days as the ideal time to patch the Android firmware image. If the
delay period is less than 30 days, we do not count it and believe it
is a reasonable delay for vendors processing the security update.

To address the second research challenge, we should balance
Patch Analyzer’s efficiency and accuracy. Hence, we implement the
Patch Missing Analysis Module based on the patch test set and patch
verification logic of the state-of-the-art open-source app Snoop-
Snitch [49] andmake it work for the large scale of firmware samples.
In detail, the workflow of signature generation for vulnerabilities
and patches [49] is as follows: (1) compiling reference source code
before patching and after patching, (2) parsing disassembly listing
for relocation entries, (3) sanitizing instructions to toss out irrele-
vant destination addresses of the instruction, (4) generating a hash
value of remaining binary code, (5) generating signature containing
function length, position/type of relocation entries, and the code’s



hash value. SnoopSnitch collects nearly 1,100 source code trees
and hundreds of different Android revisions, and re-compiles each
source code leveraging different compilers with different optimiza-
tion levels on all supported CPU types. In total, the patch test set
contains 411 test cases related to 411 CVEs and 520 patch files from
Oct 2015 to May. 2020 (Android 5.0 - Android 10).

However, the original version of SnoopSnitch is implemented as
an Android app and can only run on a single phone, which is not
suitable for large-scale analysis. Therefore, we re-implemented the
verification logic of SnoopSnitch based on Python. We take verifica-
tion on each executable file in the ROM images as an independent
detection task, send it to the thread pool, and then use multiple
processes to test each patch test case for the binary. Compared
with the original app, our analysis time for a ROM image has been
reduced by ten times. Because we discard patch test cases related to
the runtime state, it may result in false positives. In order to verify
the correctness of our work in time and correct our results, we take
samples for manual verification based on the following two prin-
ciples: 1) choose from vulnerabilities that are centrally disclosed
and identified as fixed in a specific firmware; 2) randomly select
the vulnerabilities that have been verified as fixed and unfixed.

In the Patch Missing Analysis Module, the test set contains 411
test cases. One test case is a signature generated by the correspond-
ing CVE-related patch files. The Patch Missing Analysis Module
first selects the patch that affects the firmware according to the
firmware’s OS version, selects the corresponding patch test cases
from the test set, and filters the patch-related binary files from
the unpacked files of the firmware. Then, the patch-related binary
files’ signatures will be generated in the same way as the test cases.
Then these signatures will be compared with the corresponding
test cases to determine whether these patches exist. Finally, if one
patch does not exist, we will combine the security patch level of
the ROM image and the release time of this patch to determine the
patch missing. For example, if the patch was released in Jan 2019
and the ROM image’s security patch level is Feb 2019, it will be
patch missing. If the ROM image’s security patch level is Dec 2018,
it will not be patch missing.

3.4 App Analyzer
To answer Q3 and Q4, App Analyzer, a static analysis tool im-
plemented based on Androguard [28] and CryptoGuard [34], is
designed to extract the identification features and vulnerability
features of pre-installed apps, including the CVE Matching Module
(for Q3) and the Risk Detection Module (for Q4).

The CVE Matching Module extracted the identification features
from pre-installed apps firstly, including the package name, version,
signature and file MD5. Then, the module matched the apps and
CVEs based on the identification features, and confirmed whether
the known vulnerability in thematching app by checking the related
vulnerability code and misconfigured attributes. Next, the module
combined the tuple <File MD5, vendor, ROM fingerprint> (men-
tioned in Subsection 3.2) to establish each CVE’s impact tuple <CVE
Num, package name, version, signature, File MD5, vendor, ROM
fingerprint>. Finally, after comparing the CVEs’ disclosure time
and the build time of ROM images (with vulnerable apps), we can
get the images with unfixed app CVEs.

The Risk Detection Module focuses on the security risk mea-
surement for the pre-installed apps. To address the third research
challenge, we need to select suitable features to detect the security
of the pre-installed apps. By analyzing the collected 191 CVE vul-
nerabilities (from 2013 to 2020) related to the pre-installed apps, we
find that more than 90% (176/191) are caused by attribute misconfig-
uration (168) and cryptographic misuse (8) issues4. As the proportion
of other vulnerabilities is too low, we selected the two with the high-
est proportion, attribute misconfiguration and cryptographic misuse,
as the analysis targets. Meanwhile, all these problems have the
corresponding detection items in OWASP Mobile Security Testing
Guide [50].

3.4.1 Attribute Misconfiguration. The extracted security features,
stored in the AndroidManifest.xml file5, are chosen based on the
CVE records related to Android app’s configurations and Google’s
official security enhancements, as mentioned above.

F1: exported components. The exported attribute of a compo-
nent (e.g., Activity and Service) determines whether the component
is public. If a component is public (set to true), it can be exported
and accessed by other apps. Developers can use the permission
attribute to restrict the invocation from external entities. Suppose a
component involving essential functions is exported to the external
appswithout permission protection. In that case, an attacker can eas-
ily exploit those essential functions to complete malicious actions
through a zero-permission malware installed on the same phone,
such as screen/messages recording involved in CVE-2018-14996.

F2: debuggable. The debuggable attribute can be set to true to
help developer debug the app during development. If a developer
releases an app with the true debuggable attribute, it can be ex-
ploited by attackers to access the debuggable app’s data with the
privileges of the app, even execute arbitrary code with this app’s
permissions. This is why when a developer tries to upload a debug-
gable app on Google Play, Google Play will return an error message:
"You uploaded a debuggable APK. For security reasons, you need to
disable debugging before it can be published in Google Play [22]."

F3: networkSecurityConfig. The networkSecurityConfig at-
tribute allows an app to customize its network security settings in
a safe, declarative configuration file without modifying its source
code, which is available since Android 7.0. If the networkSecurity-
Config feature is not set, this app will be at risk from a man-in-
the-middle attack [17, 30]. Google Play prohibited new apps and
updates from including insecure certificate validation logic [12–14],
like the networkSecurityConfig misconfiguration.

F4: allowBackup. The allowBackup feature defines whether an
app’s data can be backed up and restored by a user who has enabled
the USB debugging mode. If this feature is set to true, it means
an attacker can take the backup of the app’s data (e.g., account
information and passwords) no matter whether the device is rooted,
like CVE-2017-16835.

4The other vulnerabilities are SQL injection and so on, related to the user input parser
and validation.
5Every app project must have an AndroidManifest.xml file (with precisely that name) at
the root of the project source set. The manifest file describes essential app information.
The manifest file is required to declare the following: package name, used components,
required permissions, and required hardware and software features.



Table 1: Cryptographic Misuse detection rules.

Detection Rules

(1) Predictable/constant cryptographic keys
(2) Predictable/constant passwords for password-based encryption
(3) Predictable/constant passwords for Key Store
(4) Custom Hostname verifiers to accept all hosts
(5) Custom Trust Manager to trust all certificates
(6) Custom SSLSocketFactory w/o manual Hostname verification
(7) Occasional use of HTTP
(8) Insecure hash algorithms (e.g., SHA1, MD4, and MD5)

F5: sharedUserId.The sharedUserId attribute allows two ormore
apps with the same attribute value and the same certificate to ac-
cess each other’s data and run in the same process. Suppose a
pre-installed app sets this attribute as android.uid.system, and
the app has an exported component that can be interacted with any
third-party app. In that case, an attacker can conduct some privi-
leged system operations without root, through his own third-party
app [53], like CVE-2016-10136.

3.4.2 Cryptographic Misuse. Cryptography plays an essential role
in securing the user data for the apps. The misuse of Cryptographic
techniques will bring severe security threats. For example, in the
case of CVE-2020-5667, the Studyplus app (ver. 6.3.7 and earlier
versions) uses a hard-coded API key for an external service, which
can be obtained through reversing analysis of the app. As a part of
our measurement, we also need to detect the cryptographic mis-
use issues in the pre-installed apps through the analysis module
based on CryptoGuard [34], a program analysis tool to find cryp-
tographic misuse on Android. Considering of attacker’s gain and
attack difficulty, we chose the high-risk rules that are defined in
the CryptoGuard paper [52] as our detection rules. The details of
the rules are listed in Table 1.

4 MEASUREMENTS AND FINDINGS
In this section, we present and discuss our measurement results.
Particularly, we answer the research questions proposed in Section 1
with deep cause explorations.

4.1 Experiment Setup
Our measurement programs are mainly implemented in Python
and shell scripts with 12,278 lines of code. Three powerful servers
were deployed for our large-scale measurement and data storage.
Dataset. Our dataset is built from August 2020 to November 2020.
As listed in Table 2, in total, we collected 6,261 Android firmware
images of 153 Android vendors, covering all mainstream Android
phone vendors and some small vendors like Gionee [42] and Lea-
goo [47]. These images occupied 8.6 TB storage. To the best of our
knowledge, it is the largest Android firmware dataset ever used for
security measurement. The image types of our collected dataset are
diverse, like .zip and .ozip. The Android OS versions cover 2.x to
11, and the building time is from 2012 to 2020. All of them could

be unpacked successfully. Besides, we obtained 443,475 unique pre-
installed APK files from all unpacked ROM images, and 191 CVEs
related to these pre-installed apps.

Accuracy. In addition, to verify the accuracy of SnoopSnitch, we
randomly selected 50 patch missing analysis results to do the man-
ual verification. Only one result is suspected to be false positive.

4.2 Analysis Results
Following the workflow described in Section 3, we conducted a se-
ries of security analyses to answer the research questions proposed
in Section 1. Here we give our answers with the corresponding
measurement data and explore the reasons behind them.

Q1.Do theAndroid phone vendors followup the releasedAOSP
security patches in time?

Overall result. Up to 1,516 of the total 6,261 images (24.2%)
have at least one month delay. The overall average delay period
of 6,261 images is around 0.8 months. To the firmware existing the
patch delay issue, the average delay period is around 3.2 months.
The most severe delay is more than three years. That is, the latest
image of OPPO A33m (put on sale in 2015) was built in Jan 2019
with Android version number 5.1.1. However, its security patch
date was still labeled as Oct 2015, say 40 months’ delay.

In Table 2, we list the overall patch delay statistics of the top
10 vendors with the number of ROM images in our dataset. Based
on this table, we could summarize that this security patch delay
issue is widespread, even for well-known vendors, like Samsung
and Huawei. Also, some vendors’ performance is entirely terrible in
this issue, which indirectly reflects their insufficient security efforts.
For example, as one of the top 3 Android phone vendors [46], 46.8%
of the ROM images of Xiaomi have patch delay issues. Only one
image (total of 110 images) from Nokia has a one-month patch
delay, and its security effort is still admirable. In this table, no image
from Google has delay issues. It is entirely reasonable because the
Android security updates are maintained and published by Google.

Cause exploration. To further understanding the patch delay is-
sue, taking Xiaomi as an example, we compare the delay situations
among different models. As listed in Table 3, we can find no patch
delay in the models released after 2017, but the earlier models have
a relatively bad performance. One possible reason is that as experi-
encing the trough in 2016, Xiaomi devoted more resources to the
development of mobile devices from 2017. Another possible reason
is the introduction of Project Treble, as the following analysis.

Google also notices the issue of Android fragmentation and
update delay. In Android 8.0, Google re-architected the OS frame-
work (Project Treble) to split the OS framework and vendor im-
plementation to help the vendors update their devices [25]. In our
dataset, there are 4,838 images based on Android 8.0 or later ver-
sions. Among them, 782 images exist the delay issue, say 16.2%.
The average delay is 2.8 months. On the other hand, to the images
before Android 8.0, around 51.6% have delay issues, and the average
delay is 4.0 months. It means the Project Treble is successful to
some extent though we cannot quantify its contribution precisely.

Furthermore, Google launched two certification programs to
regulate and promote Android OS, certified partners [21] for phone
vendors and supported devices [24] for individual phone models.



Table 2: ROM images information and patch delay statistics of vendors.

Vendor Country Partner Amount Versions Build Time Pre-installed Apps Delay Images Proportion Delayed Months

Google US Official 1,211 5.1.1-10 201509 - 202003 10,444 0 0% 0
Huawei China ✓ 978 4.4.2-11 201612 - 202009 12,029 29 2.9% 0.099
OPPO China ✓ 826 2.3.4-11 201204 - 202010 24,688 307 37.2% 1.109
Samsung South Korea ✓ 707 4.1.2-11 201307 - 202009 12,356 165 23.3% 0.950
Xiaomi China ✓ 524 4.1.1-10 201504 - 202010 8,077 245 46.8% 2.229
Motorola US/China ✓ 397 5.1-10 201602 - 202010 5,412 80 20.2% 0.426
OnePlus China ✓ 173 5.1.1-11 201603 - 202011 3,084 69 39.9% 0.497
Vivo China ✓ 139 4.2.1-11 201307 - 202009 6,618 96 69.1% 1.755
Nokia Finland ✓ 110 8.0.0-10 201711 - 202011 4,751 1 0.9% 0.009
Realme China ✓ 101 8.1.0-10 201901 - 202011 1,979 13 12.9% 0.158
Others (143) - - 1,095 - - 163,658 - - -

Total - - 6,261 - - 253,096 - - -

Table 3: Examples of Xiaomi phones with patch delay.

Models Android Version Delayed Months Release Date

Xiaomi 10 10.0 0 Feb, 2020
Xiaomi 9 9.0 0 Feb, 2019
Xiaomi 8 8.1 0 May, 2018
Xiaomi 6 7.1.1 3 Apr, 2017
Xiaomi 5s 6.0 12 Oct, 2016
Xiaomi 4 4.4 16 Aug, 2014

Table 4: Patch delay and patch missing between partner vs.
non-partner & supported devices vs. non-supported ones.

Delay Months Missing Patches

Partner Vendors 0.83 0.97
Non-Partner Vendors 1.37 1.42

Supported Devices 5.18 4.04
Non-Supported Devices 10.96 11.09

For the certified partner, Google certifies the involved vendors to
ensure their released devices are secure and ready to run Google
and the Play Store apps. There are 145 manufacturers in the cer-
tified partners list [7]. Only the Play Protect certified devices are
recognized as supported devices with two compulsive requirements.
One is including Google apps, and the other is passing the Android
compatibility testing [1], including Compatibility Test Suite (CTS),
Vendor Test Suite (VTS), and Security Test Suite (STS). As on Sep
3, 2021, there are 33,664 supported devices in total [16]. As shown
in Table 4, the average patch delay of non-partner vendors images
is around 1.37 months, which is more than 1.5 times of partner
vendors (0.83 months). Similarly, the average patch delay of non-
supported devices is up to 10.96 months, more than twice supported
devices. We can conclude that the mobile phones of certified part-
ners and supported devices are much more reliable in most cases,
as they need to pass a series of Google security tests (especially the
patch update related tests) for certification.

In addition, we conducted a longitudinal analysis on specific
phone models as showcases. As plotted in Figure 2 (a), we selected
two phone models with similar release times, maintenance periods,
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Figure 2: Patch delay and missing trends of OPPO R9s and
OPPO A57.

and significant price differences from the same vendor. The high-
end model is OPPO R9s (put on sale in Oct 2016), and the low-end
model is OPPO A57 (put on sale in Nov 2016). For a device, we
arrange its associated ROM images in ascending order of compila-
tion time and observe the changes in patch delay. We can find no
remarkable distinction in the first eight images of these two models
from this line chart, around 0 to 3 months. However, starting from
the ninth ROM image, the difference becomes quite apparent. The
patch delay of A57 increases to 7 months and finally reaches the
peak of 19 months. On the contrary, there is no patch delay for R9s
furthermore. Although A57 was released one month later than R9s,
R9s was upgraded to Android 7.1.1 in the ninth ROM image, while
A57 was still running Android 6.0.1 until the end. It reflects that
OPPO cares more about the maintenance of high-end models. More
seriously, the update logs of A57’s last two ROM images mentioned
that the system security patches were integrated [19]. However,
the fact is that their system security patch levels were not changed.

Assessment: The security patch delay is widespread in Android
phones, even for leading vendors, like Samsung and Huawei.
24.2% of the images have this issue, and the average delay is
about 3.2 months. It means that the updated images of many
vendors focus on the feature update, not the security update.

Q2. Whether the patching claims of phone vendors are reli-
able?

Overall result. There are 383 of the total 6,261 ROM images
(6.1%) from 50 vendors that have at least one patch missing.



Table 5: Statistics of images with patch missing.

(Critical/High/Moderate/Low for the rating of the missed patches, and STS-/STS+ for the average number of missed patches before/after STS launching.)

Vendors # of Images Proportion Critical (%) High (%) Moderate (%) Low (%) Missed Patches STS- STS+

Google 51 4.2% 0 0 100.0 0 0.042 0.457 0
Huawei 2 0.2% 0 40.0 60.0 0 0.005 1.000 0.190
OPPO 161 19.5% 25.4 35.8 38.8 0 1.469 6.170 1.168
Samsung 4 0.6% 0 33.3 66.7 0 0.013 1.000 0.056
Xiaomi 19 3.6% 5.4 37.3 57.3 0 0.199 12.600 0.143
Motorola 18 4.5% 2.6 17.9 76.9 2.6 0.098 1.481 0
OnePlus 5 2.9% 0 37.5 62.5 0 0.264 11.500 0
Vivo 4 2.9% 0 61.5 38.5 0 0.078 2.500 0.113
Nokia 0 0% N/A N/A N/A N/A 0 0 0
Realme 0 0% N/A N/A N/A N/A 0 N/A∗ 0

Remarks: ∗ Realme have not gone into the market before August 2018.

Table 6: Statistics of images containing vulnerable apps.

Vendors Total Images Images w/ CVE Apps CVE Apps

Google 1211 0 0
Huawei 978 0 0
OPPO 826 53 85
Samsung 707 3 3
Xiaomi 524 7 11
Motorola 397 30 30
OnePlus 173 0 0
Vivo 139 12 12
Nokia 110 15 19
Realme 101 89 129

The most extreme one has 46 patches missing, which belongs to
OPPO R9skt (announced in 2016). This ROM image was built in May
2017, and its security patch level was in Apr 2017. All its missing
patches were disclosed from Dec 2016 to Apr 2017.

Table 5 lists the overall patch missing statistics of the top 10
vendors with the number of ROM images. According to this table,
we can find that the issue of security patch missing is quite severe,
which can also indirectly reflect the involved vendors’ insufficient
security efforts. For example, as a mainstream vendor, 161 ROM
images (19.5%) of OPPO have patch missing issues, and the average
missing number is around 1.5. Nokia still has the best performance
in patch missing with no patch missing issue. The other vendor
with no patch missing issue is Realme, a subsidiary of OPPO.

To better understand the patch missing issue, we took OPPO A59
(announced in 2016) as an example to compare the missing issues
among different ROM images. We found that the number of missing
patches increases with the ROM image upgrade. The oldest ROM
image built in 20166 only has one missing patch, but the newest
ROM image built in 20187 has 23 missing patches. We manually
confirmed the effectiveness of contained high-risk vulnerabilities,
like CVE-2017-0479 and CVE-2017-0480. The reason may be that
the developer gave up maintaining the security patches of this
mid-range model, only updated the date of the security patch level.

6Fingerprint: OPPO/A59m/A59:5.1/LMY47I/1449641681:user/release-keys
7Fingerprint: OPPO/A59/A59:5.1/LMY47I/1519786508:user/release-keys

Cause exploration. In Table 5, there are 51 ROM images from
Google having patch missing issues, which is beyond our expec-
tation, as all patches in the test set are collected from Android
security bulletins [5]. After further exploration, we noticed these
ROM images belong to 4 models, Nexus 6 (2014), Nexus 5X (2015),
Nexus 6P (2015), and Pixel (2016), of which OS versions are all
Android 7.x. Also, all missing issues are attributed to one patch,
CVE-2017-0494, an information disclosure vulnerability in AOSP
Messaging and rated as moderate. In addition to the passive obliv-
ion of developers, there is another reason that Google usually fixes
moderate vulnerabilities during major version upgrading.

Google introduced Security Test Suite (STS) into Compatibility
Test Suite (CTS) in Aug 2018 to test whether the security patches
work [8]. We measured the average number of missing patches in
the top 10 vendors’ images before and after Aug 2018, which is
listed in the last two columns of Table 5. To all top 10 vendors, the
average number of missing patches after Aug 2018 is much smaller
than the number before Aug 2018, proving the effectiveness of STS.

Table 4 also compares the differences of missing patches among
vendors (partner vs. non-partner) and devices (supported devices vs.
non-supported ones). On average, the images from non-partner ven-
dors miss 1.42 patches, which is higher than the number of partner
vendors (0.97). Similarly, the average missing number of supported
devices is 4.04, much less than non-supported ones (11.09). There-
fore, from the perspective of patch missing, the mobile phones of
certified partners and supported devices are also more secure.

Besides, we alsomeasured the longitudinal changes on themissed
patches on OPPOR9s and OPPOA57, and their patchmissing trends
are plotted in Figure 2 (b). The missing patch number of R9s in-
creases markedly in the fourth ROM image, from 10 to 34. A similar
situation also appears on A57, from 8 to 34. Our further investiga-
tion shows that the missed patches in the previous ROM images
have been fixed in the fourth one. However, the fourth imagemissed
34 new patches that are mainly related to Mediaserver (20 related
patches) and Audioserver (5 related patches). We analyzed the
update logs of both devices [19, 20] and found that the fourth ROM
image mainly updated Mediaserver and Audioserver related fea-
tures. Therefore, it is possible that OPPO temporarily ignores the
relevant security patches due to compatibility issues, not updating
features, and patching security bugs at the same time.



Furthermore, in the chart, it can be seen that OPPO repaired the
previously missed patches in the subsequent ROM images. But the
difference between the two devices appears in the last two images.
The missed number of A57 maintains at 5, while the number of R9s
decreases to 1. The reason is that R9s was upgraded to Android
7.1.1 from 6.0.1, while A57 was not. Due to the upgrade of the
OS version, the images of R9s were directly built on the new base
Android OSwithout patchingmissing.What is more, the last missed
patch of R9s only affected Pixel devices, not all Android devices.
This longitudinal analysis also indicates that a vendor has different
attitudes towards mobile phones’ security at different price levels.

Assessment: The claims of vendor patching may not always be
reliable, even for some mainstream vendors, such as OPPO. 6.1%
ROM images from 50 vendors have security patch missing issues.
The possible reason is that vendors do not have sufficient testing
time or cannot bear the maintenance costs.

Q3.Howmany pre-installed apps containing unfixed vulner-
abilities (CVEs)?

Overall result.There are 462 (7.4%) ROM images from71 (46.4%)
vendors containing the unfixed app CVEs. Table 6 lists the sta-
tistics of images containing unfixed vulnerable pre-installed apps
by vendors. In this table, Google, Huawei, and OnePlus have the
best performance with no ROM images containing unfixed vulner-
abilities. On the other hand, Realme and OPPO are the only two
vendors with more than 50 ROM images containing unfixed vul-
nerabilities. Especially, Realme has the most (89) vulnerable ROM
images, and on average, each ROM image has more than one un-
fixed vulnerable pre-installed app. The reason is that Realme and
OPPO have a unique, vulnerable pre-installed app, named Dropbox-
ChmodService, appearing in all ROM images containing unfixed
vulnerabilities of these two vendors.

Case studies.Vulnerable appswith unfixed vulnerabilities bring se-
vere security threats. Considering the newness and popularity of the
device, we took Nokia 6.2 as an example, its firmware8 pre-installed
two appswith known vulnerabilities: (1) com.google.android.tag
(ver. 1.1) (CVE-2019-9295, disclosed onAug 21, 2019) and (2) com.qu-
alcomm.qti.callenhancement (ver. 9) (CVE-2019-15473, disclosed
on Nov 14, 2019). Specifically, CVE-2019-9295 is a vulnerability re-
lated to the NFC function, leading to local privilege escalation.
CVE-2019-15473 is a vulnerability caused by an exported service
(i.e., CallEnhancementService). As com.google.android.tag is
a Google official pre-installed app integrated into the AOSP source
code, and com.qualcomm.qti.callenhancement is an essential
service pre-installed app provided by Qualcomm. It means that
some vendors do not pay enough attention to security checking
when pre-loading suppliers’ apps, which may be due to excessive
trust in the security of these well-known suppliers.

Scope of influence. Due to commercial cooperation and app sup-
plier reasons, phones are usually pre-loaded many apps. On the
other hand, a pre-installed app can be loaded by dozens of vendors.
Therefore, one vulnerable pre-installed apps may affect dozens of

8Fingerprint: Nokia/Starlord_00WW/SLD_sprout:9/PKQ1.190118.001/
00WW_1_160:user/release-keys, built in January 2020.

vendors. Considering the limitations of the vulnerability reporter’s
device, the actual scope of influence of such vulnerabilities may be
more than the disclosed scope.

According to the app’s scope of influence, we showed seven typi-
cal apps in Table 7. We can find that the CVE information disclosed
publicly is just the tip of the iceberg. Apart from the official vulnera-
ble pre-installed app com.google.android.tag, every vulnerable
pre-installed app is associated with undisclosed vendors. The two
pre-installed apps associated with the most number (15) of undis-
closed vendors is com.qualcomm.qti.callenhancement (ver. 9)
and com.qualcomm.qti.callenhancement (ver. 8.1.0). Since they
are provided by Qualcomm, the major chip supplier for Android
devices, all devices equipped with Qualcomm chips will be affected.
This situation also applies to com.mediatek.factorymode (ver. 1.0)
with 10 undisclosed vendors, a pre-installed app related to Medi-
aTek, another major chip supplier for Android devices. The vulner-
able pre-installed app com.dropboxchmod (ver. 1.0), related to the
vendor customized basic service in OPPO and Realme devices, is
associated with the most (328) ROM images. Therefore, the vulner-
able apps from basic infrastructure services and hardware suppliers
will affect various devices.

In addition, we noticed that 5 vulnerable pre-installed apps (i.e.,
com.dropboxchmod (ver. 1.0, disclosed in 2018), com.qualcomm.qti-
.callenhancement (ver. 9, disclosed in 2019), com.log.logservice
(ver. 1.0, disclosed in 2019), com.qualcomm.qti.callenhancement
(ver. 8.1.0, disclosed in 2019), and com.mediatek.factorymode (ver.
1.0, disclosed in 2019) – appeared in the ROM images built in
2020, which means those ROM images still load the vulnerable
pre-installed apps at least one year after the vulnerabilities were
disclosed. All these apps are related to the basic system services,
and three of them are provided by chip suppliers.

Assessment: Apps with unfixed CVEs appear in almost half of
vendors’ ROM images, even some famous vendors, like OPPO
and Samsung. The most extreme vendor is Realme, the average
number of unfixed vulnerabilities in each ROM image is more
than 1. A vulnerable pre-installed app can affect hundreds of
ROM images from dozens of vendors. The affected vendors may
be excessive trust in the code security of well-known suppliers.

Q4. Whether the "non-vulnerable" pre-installed apps are se-
cure?

Overall result. 3595 (57.4%) ROM images from all 153 vendors
contain potentially vulnerable pre-installed apps. Table 8 lists
the average number of potential security risks in each ROM image
by vendors. We can find that Realme has the most potential security
risks in each ROM image, and Huawei has the least number. There
may be two main reasons for this situation. One is that Realme
has the most average number (485) of pre-installed apps in each
ROM image. The more the base, the more the potentially vulnerable
quantity. The other reason is the third-party pre-installed apps. We
found that 83.67% of potentially vulnerable pre-installed apps in
Realme come from third-party suppliers, which is also the highest
proportion among the top 10 vendors.

It is worth noting that there are 117 potentially vulnerable apps
in Google’s ROM images on average. As ROM images of all other



Table 7: Scope of influence of vulnerable pre-installed apps.

(DAVs stand for disclosed affected vendors, and UAVs stand for undisclosed affected vendors.)

Package Name App Version Affected ROMs CVEs DAVs UAVs ROM Versions Build Time

com.google.android.tag 1.1 840 1 N/A∗ 60 4.0.4 - 9.0 201203 - 202009
com.dropboxchmod 1.0 328 1 1 1 4.4.4 - 10.0 201601 - 202011
com.qualcomm.qti.callenhancement 9 251 4 1 15 9.0 - 10.0 201804 - 202010
com.log.logservice 1.0 108 2 1 1 7.1.1 - 10.0 201712 - 202005
com.qualcomm.qti.callenhancement 8.1.0 90 3 1 15 8.1.0 - 10.0 201804 - 202002
com.oppo.engineermode V1.01 76 1 1 1 6.0 - 8.1.0 201611 - 201904
com.mediatek.factorymode 1.0 16 6 4 9 7.0 - 9.1 201803 - 202007
Remarks: ∗ The vulnerability disclosure information does not mention affected vendors.

Table 8: Detection results of potentially vulnerable pre-
installed apps. (F1-F5 are defined in Subsection 3.4.)

Vendor F1 F2 F3 F4 F5 Crypto Total

Google 34 0 15 35 13 19 116
Huawei 26 0 7 27 16 5 81
OPPO 68 1 13 81 47 23 233
Samsung 31 0 20 27 23 17 118
Xiaomi 104 0 66 118 62 58 408
Motorola 95 0 53 103 46 42 339
OnePlus 93 0 49 120 50 39 351
Vivo 64 0 28 60 37 24 213
Nokia 69 0 46 90 37 28 270
Realme 130 0 83 128 94 70 505

vendors are customized based on AOSP, the potentially vulnerable
apps in AOSP will also be pre-loaded in these ROM images. If one
of the results in practical security issues, it will have a large scope
of influence, like the app Tag (CVE-2019-9295).

Moreover, we analyzed the sources (the original developers) of
the potentially vulnerable pre-installed apps based on their signa-
ture information. Most of these apps come from the phone vendors
occupying 71.5% (87,825/122,770), and 19,330 (15.7%) potentially
vulnerable pre-installed apps coming from third-party developers.

In addition, we did the exploitability verification on these po-
tentially vulnerable pre-installed apps. First, we confirmed which
devices contain potentially vulnerable pre-installed apps in our
own devices. Then, we used the vulnerability scanning tool based
on drozer [40] to detect the target APP to discover the exploitable
vulnerabilities. For the exploitable vulnerabilities, we constructed
and ran the corresponding PoCs so that we could provide evidence
of exploitable vulnerabilities to vendors. Finally, we confirmed and
submitted 307 exploitable vulnerabilities based on our own devices.
38 pre-installed app vulnerabilities from 15 vendors have been
confirmed with 32 CVE/CNVD numbers.

Case studies. Here we give some interesting cases.

Case 1. The security risks of "ancient times" are still alive.
The app com.autonavi.manu.widget (ver. 2.4), signed by Au-

toNavi Software Co., set the debuggable value as true. This app
is integrated into the ROM image9. The attackers can exploit the
9Fingerprint: OnePlus/OnePlus5T/OnePlus5T:9/PKQ1.180716.001
/2002171214:user/release-keys of OnePlus, built on Feb 17, 2020.

exposed debuggable functionality to access the app data and even
execute arbitrary code. There are two possible reasons: (1) the de-
velopers forgot to check the debuggable value, (2) the supplier
provided the test version of the app by accident.

Case 2. Crypto misuses bring practical data leakage risks.
The app com.samsung.android.smartcallprovider (ver. 10.0.24)

signed by Samsung, used a hard-coded stringas the key for the
deployed AES encryption. Since AES is a symmetric encryption al-
gorithm, the attacker can utilize this key to decrypt the ciphertext,
making the encryption operations meaningless. The developers
may not have enough knowledge to invoke cryptographic APIs
correctly [37]. Also, the manufacturer neglected to check on the
hard-coded key existing in the pre-installed apps.

Case 3. Exported components result in user privacy leakage.
The app com.vivo.weather.provider (ver. 6.0.2.2) is a weather

app developed byVivo. It has an exported content provider, com.viv-
o.weather.provider.WeatherProvider. The attacker can steal
the victim’s privacy from the content URIs through the exported
component without permission, such as the victim’s accurate lo-
cation information (pinpointing the street)10, the cities visited in
recent 100 days11, and inferring the victim’s trajectory informa-
tion12. Based on our database, this vulnerability exists in all 24
versions of this app (ver. 1.0 to 6.0.2.2), which affects 109 ROM
images of Vivo (OS ver. 4.4.2 to 11), build time from Jun 2016 to Sep
2020. This vulnerability has been confirmed by Vivo and assigned
a CVE number, CVE-2021-26279.

Case 4. Different vendors have different reactions.
The Google app com.android.providers.settings(ver. 10)

has a vulnerability that allows an attacker to steal the victim’s pri-
vacy through a no-permission third-party app. We have reported
this vulnerability to nine related vendors, of which four vendors
confirmed it, four vendors ignored it, and one vendor (Google)
still reviews it for nearly three months. In the confirmed vendors,
one vendor (Huawei) identified this vulnerbility as high-risk, two
vendors (OPPO, Vivo) identified this vulnerability as medium-risk,
and one vendor (Lenovo) identified it as low-risk. Finally, two ven-
dors assigned CVE numbers to this vulnerability, CVE-2021-22486
(Huawei) and CVE-2021-26281 (Vivo). In the ignored vendors, three

10Through content://com.vivo.weather.provider/localweather.
11Through content://com.vivo.weather.provider/usualcity.
12Through content://com.vivo.weather.provider/alert.



vendors (Samsung, ZTE, Oneplus) reasoned that the app was a pre-
installed app of Google, and one vendor (Xiaomi) reasoned that the
leaked information was insensitive. These differences are mainly
due to the different customized development of the Android system
by various vendors and various vendors’ different vulnerability
review standards.

Assessment: All vendors have potential security risks in the
pre-installed apps in their ROM images. It may lead to multiple
kinds of vulnerabilities. The vendors need to do a comprehensive
app security test before their devices are released to markets,
especially for their customized apps and third-party apps.

5 THREAT TO VALIDITY
Here we discuss several threats to the effectiveness of this work.

CVE data. Since CVE reports were submitted without standard
formats, some of them may lack important information. For exam-
ple, if the CVE reports do not provide the vulnerable apps’ affected
versions, we cannot match the corresponding pre-installed apps.
This issue may be solved by collecting more vulnerability data from
broader sources, like research papers, technical reports, and blogs.

Packed App. As APP Analyzer is built on static analysis tools, it
cannot analyze packed apps well. Nevertheless, we found that only
0.23% (1,020/443,475) of the pre-installed apps are packed, which
has minimal impact on our measurement results.

6 RELATEDWORK
In this section, we review the related work on the security analysis
of Android firmware. Most of the previous research focused on
a particular aspect of firmware, and few works tried to launched
comprehensive large-scale security measurements.

The closest works are the studies of Zheng et al. [60] and Gamba
et al. [41]. Zheng et al. [60] designed and implemented DroidRay
to evaluate the security of Android firmware images on both the
app level and system level, and 250 firmware images were covered.
However, their analysis concentrated on pre-installed malware,
and the vulnerabilities they analyzed are too old to exploit in the
current scenario. Gamba et al. [41] carried out a large-scale study
on the ecosystem of pre-installed Android apps and the potential
impact on consumers. This study covers several aspects of pre-
installed apps, like the stakeholders involved in the supply chain,
personally identifiable information leakage, potentially harmful
behaviors. However, their analysis target only concentrated on the
malicious pre-installed apps and the related privacy operations,
without the firmware level security analysis that includes system-
level and pre-installed app level. Compared with the above work,
this paper presents a comprehensive security measurement on the
Android firmware ecosystem, giving a panoramic view and the
causes behind the security threats, not just the particular aspects.
Meanwhile, we used a more extensive and diverse firmware dataset
for analysis.

During the firmware customization process, new security haz-
ards may be introduced. For example, Zhou et al. [61] studied the
security risks introduced by the driver customization, especially

the downgrade of the Linux protection level of a customized device-
related file. Aafer et al. [27] detected the security configuration
changes introduced by Android customization, such as permission
mismatch and duplicate components declaration. On other aspects
of vendor customization, Tian et al. [54] and Aafer et al. [26] focused
on the security of AT commands and hanging attribute references,
respectively. Possemato et al. [51] studied the Android OEM com-
pliance and security posture during the customization process.

The issue of capability leakage in firmware is also noticed by
security researchers. As an early study, Grace et al. [43] designed a
tool namedWoodpecker to uncover the permission leaks in Android
firmware. Nevertheless, their experiment scale was small, and only
eight images were analyzed. Wu et al. [57] studied the provenance,
permission usage, and vulnerability distribution of pre-installed
apps. Similarly, Cam et al. [32] proposed a system, uitXROM, to
detect sensitive data leakage in Android firmware by analyzing re-
lationships of pre-installed apps. More recently, Elsabagh et al. [38]
presented FirmScope, an automated analysis system to uncover
different types of vulnerabilities in pre-installed apps, and over two
thousand firmware images were evaluated.

Besides, to the aspect of security patches, Zhang et al. [59] in-
vestigated the Android kernel patch ecosystem, revealing the rela-
tionship among different parties as well as the bottleneck in patch
propagation. The study of Farhang et al. [39] also measured the
patch latency from Qualcomm and Linux repositories to AOSP.

7 CONCLUSION
To obtain a panoramic view and deep understandings of the An-
droid firmware ecosystem security, this work presents large-scale
security measurements based on a record firmware dataset of 6,261
ROM images from 153 vendors. For achieving such measurements,
we designed and implemented an automated analysis framework
named AndScanner, containing the Crawler, ROM Parser, Patch
Analyzer, and App Analyze modules. As demonstrated in this work,
all the users know about their devices’ security can be just the tip
of the iceberg. Many new findings and the reasons behind them are
discovered through our measurements.
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