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ABSTRACT
Android is a Linux-based multi-thread open-source operating
system that dominates 85% of the worldwide smartphone market
share. Though Android has its established management for its
framework layer processes, we discovered for the first time that the
weak management of native processes is posing tangible threats
to Android systems from version 4.2 to 9.0. As a consequence,
any third-party application without any permission can freeze
the system or force the system to go through a reboot by
starving or significantly delaying the critical system services using
Android commands in its native processes. We design NativeX to
systematically analyze the Android source code to identify the
risky Android commands. For each identified risky command,
NativeX can automatically generate the PoC (Proof-of-Concept)
application, and verify the effectiveness of the generated PoC.
We conduct manual vulnerability analysis to reveal two root
causes beyond the superficial attack consequences. We further
carry out quantitative experiments to demonstrate the attack
consequences, including the device temperature surge, the battery
degeneration, and the computing performance decrease, based on
which, three representative PoC attacks are engineered. Finally, we
discuss possible defense approaches to improve the management
of Android native processes.

CCS CONCEPTS
• Security and privacy → Mobile platform security; Denial-
of-service attacks.
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1 INTRODUCTION
Android is a Linux-based multi-thread open-source operating
system for mobile devices. It not only has gained tremendous
popularity among mobile users in recent years, but also has
been used in IoT devices and various mission-critical tasks, such
as point-of-sale devices [11], medical devices [30], on-vehicle
systems [5][6], and even aircraft and satellite devices [1][10]. One
of the reasons that Android has been widely adopted is that Android
provides compatible development support for programming in both
framework layer and native layer, so that developers can freely
enjoy both the transparent access to Android resources in the
framework layer and the low running latency and high protection
in the native layer.

The fundamental resources, i.e., system resources and device
computing resources, are shared across the Android system for both
framework layer processes and native layer processes. In order to
avoid conflict during the use of the system resources, the access to
such resources is coordinated by the synchronization mechanism.
The synchronization mechanism works by introducing an exclusive
lock that only one thread at a time can acquire the lock (except the
read lock) and the lock is required to be acquired prior to any access
to the shared resource [7]. However, it also implies that if a process
has occupied a system resource, the other processes waiting for the
resource are blocked until the resource becomes free. Similarly, if a
process has taken a large portion of the device computing resources,
e.g., CPU or RAM, the other processes may run slow due to the lack
of computing resources.

In case such an undesirable situation happens, Android provides
a set of process management mechanisms for different situations
to ensure the proper functioning of the system. For the situations
where an app is not responding, the device memory is low, and a
system service is not responding, Android triggers Application Not
Responding (ANR), Low Memory Killer (LMK), and the Android
watchdog mechanism, respectively. The proper functioning of
Android relies on the assumption that there is no process that
cannot be properly managed (e.g., killing or restarting the process)
by any above memory management mechanism.

Unfortunately, this assumption does not always hold. Our work
uncovers that an Android native process is such a process that
can exhaustively monopolize the system resources or the device
computing resources in an unconfined manner. The native process
here aligns with the native process concept used in LMK. It refers
to Linux processes running in the Android system. A native process

https://doi.org/10.1145/3320269.3384713
https://doi.org/10.1145/3320269.3384713
https://doi.org/10.1145/3320269.3384713


can be from i) the Linux executables shipped in Android system, no
matter it can be invoked by third-party apps or not, and ii) the third-
party apps through Java API Runtime.getRuntime().exec(), na-
tive API fork() or system(). A native process cannot be properly
managed by any existing memory management mechanism. Due
to the insufficient management of native processes, an app without
any permission can result in an unresponsive Android within 5
seconds using the legitimate Android commands as attack vectors.

To the best of our knowledge, this is the first exploration
of exploiting Android commands as attack vectors. With the
improvement of discreet security mechanisms in Android, it is more
and more difficult to exploit APIs as attack vectors. The attacks
relying APIs as attack vectors on previous Android versions cannot
be reproduced in later versions due to the unavailability of the attack
APIs or new constraints in accessing directories or files [22][23][31].
Using legitimate commands as attack vectors is rarely studied which
is, in fact, a valuable direction that is worth exploring.

We design and implement an automatic analyzing tool named
NativeX (Native eXecutioner) to identify the risky Android
commands, generate the PoC (Proof-of-Concept) exploit apps, and
verify the effectiveness of the generated PoC apps. Note that the
Android commands here include both Linux commands (e.g., top)
and Android-specific commands (e.g., am). Specifically, NativeX
takes Android source code including both framework source code
and command source code as input. It is able to find out the system
resources, specifically the storage resources, i.e., files and directories,
that are shared by both the framework critical system services
and the Android commands. NativeX focuses on storage resources
since they have been considered as a type of informative and
competing resources [17]. NativeX further automatically constructs
a PoC exploit app for each Android command identified in the
previous step, and verifies the effectiveness of the app. Our findings
show that this type of vulnerabilities existing in a wide range of
Android versions from 4.2 to 9.0 which cover 99.7% of more than 2
billion real-world Android devices including smartphones and IoT
devices [3][9].

We further conduct manual vulnerability analysis and reveal
two root causes. Firstly, there is no restriction on the number
of native processes that an Android app can spawn. Secondly,
for the native processes that have already started, there is no
effective management, that is, Android cannot effectively manage
the resources used by native processes even when the system itself
is under high resource pressure. The vulnerability analysis shows
that, although the attack consequences seem alike, the causes of
the identified vulnerabilities are totally different from the previous
DoS attacks [13][22].

We quantitatively evaluate the attack consequences, including
device temperature surge, battery degeneration, and computing
performance decrease under persistent attack. Though the attack
consequences may be speculative, they are rarely studied in a
quantitative manner. Based on the easily-exploitable nature of the
vulnerability, we also design and present three representative PoC
attacks, i.e., DoS attack against Android system, DoS attack against
Android app, and physical harm to users.

This work suggests that the weakmanagement of Android native
processes urgently requires amendment. We also discuss possible

defense approaches against this type of vulnerabilities. In summary,
this paper makes the following main contributions.
• We reveal a new type of vulnerability existing in awide range
of Android versions from 4.2 to 9.0 that can lead to a system
freeze/reboot within 5 seconds, ascribing to the insufficient
management of Android native processes. An app without
any permission can monopolize a shared resource using
legitimate Android commands in native processes to force
critical system services to be starved or slowed down, which
further freezes the system.
• In order to find out the attack vectors exploiting such
vulnerability, we design and implement an automatic static
analyzing tool NativeX which is the first exploration of using
Android commands as attack vectors. NativeX successfully
identifies a list of commands on the 6 major Android versions
from 4.2 to 9.0which can be practically used to launch attacks.
It can further construct a PoC exploit app for each identified
command and verify the effectiveness of the PoC app.
• We conduct experiments to qualitatively demonstrate the
attack consequences of the vulnerability in three aspects,
i.e., the temperature surge, the battery degeneration, and
the computing performance decrease. We also showcase
three representative attacks including the DoS attack against
Android system, the DoS attacks against target Android
application, and the physical harm to device users due to the
device overheat.
• We conduct vulnerability analysis and reveal the root causes
of the vulnerability, based on which, we discuss the defense
approaches against such vulnerability and provide our
mitigation analysis to the Android security team for their
reference.

2 BACKGROUND AND VULNERABILITY
OVERVIEW

2.1 Android Process Management
There are four mechanisms that manage the running processes
in Android, i.e., ANR, LMK, Android watchdog, and JVM Garbage
Collector.

ANR. ANR is a situation where an application is not responding
to an input event or processing a broadcast for a certain amount
of time. The ANR mechanism is mainly to guarantee the smooth
performance of Android from the user experience angle. ANR is
managed according to the running information, e.g., the CPU states
and the timeout message, from ActivityManagerService (AMS). ANR
sets time thresholds for completing different types of operations. If
any operation exceeds the preset threshold regardless of the cause
of the delay, Android treats the situation as ANR and pops up a
dialog providing the user with options either to wait or force quit
the unresponsive app. Although the force quit may cause data loss
or interim operation interruption, it can generally improve the user
experience and reduce the risk of extending the local delay to the
system-wide.

LMK. LMK manages the processes from the system memory
usage angle. LMK is designed to monitor the memory state
of the Android system and react to high memory pressure by
killing the least essential processes at that moment to keep the



system performing at acceptable levels. In order to determine the
importance of processes, LMK maintains an importance hierarchy
based on the oom_adj value of the process which has 16 importance
values and is calculated based on a list of factors regularly in
ActivityManagerService. The smaller the process’s oom_adj
value is, the more important the process is. The “native process”
is one of the priority levels. The absolute oom_adj value for the
native process may vary in different Android versions (e.g., -1000
in Android 9.0), but it is the lowest among all the processes within
the same Android version and commented as “not being managed”
in the source code.

Android Watchdog. Android watchdog is to deal with the
system not responding situation. Android watchdog is a separate
thread in system_server that monitors the most important
system services in system_server. It is worth noting here that
the Android watchdog is different from the traditional Linux
watchdog. The Linux watchdog monitors the running status of the
whole system, while Android watchdog only monitors the critical
system services. These services, such as ActivityManagerService
which is fundamental in the previous two process management
mechanisms, are so critical to the Android system that any
failure of these services may lead to the system unavailability.
Android watchdog is a time-based monitor that any opera-
tion exceeding the preset timer triggers a recovery process.
Specifically, Android watchdog has two checkers, i.e., Monitor
Checker and Looper Checker. The monitored services reg-
ister themselves to watchdog’s Monitor Checker or Looper
Checker by adding Watchdog.getInstance().addMonitor() or
Watchdog.getInstance().addThread() to the source code in
their service classes. These two checkers obtain the service running
status through some operational tests. If there is a timeout occurs,
Android watchdog generates necessary log information and sends
signal 9 to system_server process to kill and restart it. We can
see that the Android watchdog is designed to recover the system
service from deadlock, starvation and other failures by killing the
system_server and forcing a system soft-reboot. In this sense, the
watchdog is the last line of defense in Android.

JVM Garbage Collector. Other than the three management
mechanisms designed specifically for Android, there is one more
memory management mechanism inherited from the JVM (Java
Virtual Machine). In order to avoid the instability and unrespon-
siveness in JVM applications caused by memory shortage, JVM
Garbage Collector (GC) is to free unreferenced space in the JVM
heap memory. GC monitors all the objects in the heap memory and
deletes objects that are not referenced by any part of the running
application. For Android processes, the framework processes run
in JVM and the native processes spawned from the Java code
(e.g., Runtime.getRuntime().exec()) are also managed by such
mechanisms. However, the native processes spawned from the
native code through JNI framework use memory in the native heap
instead of memory in JVM heap, and hence are not managed by
any mechanisms from JVM.

The above four existing process management mechanisms are all
focusing on the framework processes. Terminating the app process,
e.g., by ANR or LMK, indeed kills all processes in its process group
including both framework processes and native processes. However,

we have not observed any management mechanism specifically for
the native processes, which implies a risk to the Android system.

2.2 Vulnerability Overview
We reveal a new type of vulnerability that is due to the weak man-
agement of native processes. The vulnerability can be understood
from two angles, i.e., the system resources and device computing
resources.

Freezing the system via occupying critical system re-
sources using legitimate Android commands: Android inher-
its part of the Linux commands, e.g., top, meanwhile, it also
develops a set of specific commands, e.g., am. With the help of
Android NDK, any Android app is able to invoke such commands
in its native processes. Due to the weak management of the native
processes, the Android commands running in the native process
can occupy the system resources without any restriction. If the
occupied system resource is indispensable to the critical system
services, it will lead to the starvation of the critical system services.
Such starvation in critical system services freezes the whole system
and further triggers the watchdog recovering process that kills the
Android userspace (e.g., the system server, the Zygote and other
processes) and forces the system to go through a soft-reboot.

Exhausting the device computing resources via spawning
a large number of native processes: As there is no restriction
on the use of the native process, any app is able to spawn a large
number of native processes in an instant to exhaust the device
computing resources. Unfortunately, due to the lack of computing
resources, ANR and LMK cannot timely react to this situation to
kill the malicious app. As a consequence, the system is not able to
maintain its basic functionality because of the unavailability of the
device computing resources. Finally, it falls again to the last defense
line, i.e., the watchdog recovering process.

3 NATIVEX
3.1 Overview
As illustrated in Fig. 1, NativeX is composed of four modules
represented in dashed rounded rectangles, i.e., static code analyzer,
risky command analyzer, automatic PoC generator, and automatic
verifier. The static code analyzer takes the Android framework
source as input to sift out a set of critical file system resources
that are used in the potential risky Android framework methods.
Risky command analyzer further identifies the Android commands
that have operations on these critical file system resources by
analyzing the Android command source code. The static code
analyzer and the risky command analyzer together identify the
Android commands that can potentially be abused to occupy the
system resources, particularly the file system resources that are
required by critical Android system services. The output of each
step within the module is represented in the solid rectangles, in the
form of sets of objects, methods, services, directories/files resources,
and commands. After that, the automatic PoC generator constructs
a ready PoC Android app for each identified risky command. Finally,
the automatic verifier verifies whether the PoC app indeed leads to
a successful attack, i.e., an unresponsive system.
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Figure 1: Overview of NativeX.

3.2 Static Code Analyzer
The static code analyzer takes the Android framework source code
as input, and outputs a set of system resources, specifically the file
system resources, that are used in critical Android system services
or other risky framework methods. In order to achieve such target,
static code analyzer briefly takes three steps, i.e., identifying the
risky objects and methods in the critical system services, sifting-out
the risky methods by extending the candidate set to the system-
wide, and finally finding out the file system resources used in these
risky methods.

First of all, we search for the critical Android system services
which are defined as the indispensable services whose failure
may cause severe consequences, such as system freeze, crash
or reboot. As introduced in Section 2.1, the system services
monitored by Android watchdog are so critical that any failure
in these services would lead to a watchdog recovery attempt.
NativeX utilizes this information to find the critical system
services. It finds out the services registered themselves to Android
watch dog using Watchdog.getInstance().addThread() and
Watchdog.getInstance().addMonitor(), forming {S} in Fig. 1.

After we have the critical system services, we step further to find
the high-risk methods within these critical system services. NativeX
treats the methods using a synchronized object as the methods with
high risks, because these methods can be starved or delayed while
waiting for the synchronized objects. And these starvation and
delay could trigger the system reset from the Android watchdog.
NativeX firstly identifies such objects set, i.e., {O }, by recognizing
the synchronized() blocks in the source code. Following the
synchronized objects set {O }, NativeX further finds out the methods
in {S } that directly use synchronized objects in {O }, forming set
{M1direct }. Regarding the indirect methods from {S }, which are
denoted as {M1indirect }, we traverse the Android source code
multiple times to trace back the caller methods. We add every
newly-found methods to {M1indirect } till there is no more new
method. {M1direct } and {M1indirect } together form {M1}.

Other than the objects and methods in critical services, invoking
points can be from other parts of the Android framework, which
highlights the importance of extending the search of risky methods
to the system-wide. Different from the candidates in {M1}, the
unresponsive methods that are not monitored by the Android
watchdog would not directly cause watchdog triggering the system
recovering process. However, if the methods are slowed down
significantly while invoking the objects in {O } or methods in {M1},
there is a higher chance that the invoked services trigger the
watchdog.

We firstly scan through the whole framework source code to
find the methods that are invoking the objects in {O } or methods in
{M1}, which is denoted as {M2tmp }. We then sift out the time-
consuming methods in {M2tmp } to form a system-wide risky
method set {M2}. NativeX targets the methods that include loops
and have I/O operations in the loop since loop statements and
I/O operations are generally considered to be time-consuming.
However, not all the time-consuming methods have loops and I/O
operations directly, for example, some methods that gather and
update real-time system states are also time-consuming. Despite
that our knowledge may not be complete, we would like the
result to be as complete as possible. Therefore, to the best our
knowledge, we manually add in 10 such time-consuming meth-
ods, i.e., printCurrentState(), writeEvent(), dumpStackTraces(),
printCurrentLoad(), addErrorToDropBox(), updateOomAdjLocked(),
computeOomAdjLocked(), killProcessGroup(), isProcessAliveLocked(),
updateLruProcessLocked(). Generally, NativeX obtains a set of
methods {M2} by selecting the methods from {M2tmp } using the
following two criteria, i) including loops and having I/O operations
in the loop; ii) having any of the above 10 methods.

Finally, the static code analyzer outputs the file system re-
sources, i.e., {R}, used in the above-identified risky candidate sets
{O,M1,M2}.



3.3 Risky Command Analyzer
Risky command analyzer is to locate the Android commands which
share the same file resources in {R} with the risky candidates
we have identified in the previous step. We believe that due
to the weak management of the native process, these native
commands are potentially able to be exploited to occupy the file
system resources so as to block or slow down the access from
the risky objects/methods significantly. This step is also done by
analyzing the source code. Differently, it analyzes the Android
command source code. Usually, the commands source code is
located at /external/toybox/toys, /system/core/toolbox and
/frameworks/base/cmds. We filter the Android command source
code and obtain the command set {C} including all the commands
that have operations in storage resources in {R}.

3.4 Automatic PoC Generator and Verifier

Listing 1: Core code in PoC app template.
for ( i = 0 ; i <num ; i ++ ) {

i f ( ! f o r k ( ) ) {
system ( " xxx_command " ) ;

}
i f ( f o r k ( ) ) {

while ( 1 ) {
s l e e p ( 1 ) ;

}
}

}

In the final step, NativeX automatically constructs a PoC
application for each command in set {C}. To achieve the automation,
we need to manually construct an app template that forks a number
of native processes executing a command using a C++ function
system(). The core code of the template is shown in Listing 1.
Then, for each identified command, NativeX generates and builds a
new app based on the app template by replacing the parameter of
system() with the command. The target Android version is set in
the build.gradle file accordingly so that the app can be compiled
to adapt different versions using gradle commands, i.e., gradle
assembleDebug or gradle assembleRelease.

Listing 2: Automatic verifier script.
adb s h e l l i npu t keyevent 4 / / Return
adb s h e l l i npu t keyevent 3 / / HOME
adb s h e l l i npu t keyevent 24 / / Volume up
adb s h e l l i npu t keyevent 25 / / Volume down
adb s h e l l i npu t keyevent 26 / / Power

The automatic verifier is to verify that the PoC app indeed leads
to an unresponsive system. The automatic verifier requires that
the testing device is connected via a USB cable to the computer
where NativeX is running, and an ADB connection is established
between the device and the computer. The verifier installs and
launches the PoC app using adb install and adb shell am
start. A list of operations, as shown in Listing 2, are issued to
test whether the system can respond properly. The running time
for the script under normal condition is around 10 seconds. If the
system does not respond timely, e.g., within 60 seconds, or the ADB

connection is interrupted, we deem that the system has fallen into
an unresponsive state or gone through a reboot.

4 EVALUATION
NativeX is coded using Python and Shell script with 1464 lines of
code. It is running on macOS 10.13.6 with 16 GB memory and 2.8
GHz Intel Core i7 processor in this evaluation. We demonstrate how
NativeX gradually narrows down the risky candidates and identifies
the risky commands. Our evaluation confirms that this vulnerability
affects Android versions from 4.2 to 9.0. We further conduct a
vulnerability analysis to reveal its root causes. In addition, we
present a quantitative evaluation of attack consequences, including
device temperature surge, battery degeneration, and computing
performance decrease under persistent attack.

4.1 NativeX Evaluation
We run NativeX on the 6 major Android versions ranging from
4.2 to 9.0. We notice that the critical system services monitored by
watchdog are changing a lot as shown in Table 1. We demonstrate
the NativeX results using the latest Android 9.0 source code.
NativeX takes 63.84 seconds to complete the analysis of Android
9.0. As shown in Table 2, in total, we have identified 12 system
services that are monitored by the watchdog, where there are 52
synchronized objects and 906 methods directly invoking these
objects. In order to find out all the invoking methods, NativeX
further traces back along the call graph and obtains 410 methods
indirectly invoking these objects, which takes five layers tracing
backward. Following the critical objects and methods (i.e.,{O } and
{M1}), the NativeX static code analyzer extends to the system-
wide and collects 77 methods (i.e.,{M2}) that are not monitored by
watchdog but using objects and methods in {O } and {M1}. Finally,
nine root storage resources (i.e., {R}) are identified, i.e., /data, /dev,
/mnt, /proc, /product, /storage, /sys, /system, /vendor.

Atop these system storage resources, risky command analyzer
filters the Android command source code and obtains the risky
commands as shown in Table 3. Due to the page limit, Table 3
only lists the numbers for each version1. A small portion of the
total commands are recognized as risky, for example, out of the
269 commands found in the Android 9.0 command source code,
there are 50 risky commands that have operations in the 9 critical
storage resources. Readers may have noticed that not all of the
risky commands identified from the Android command source code
are available in the Android system. More about this interesting
observation is explained in Section 4.2. Finally, the automatic PoC
generator constructs a PoC app for each identified command. The
number of native processes that the PoC app is to spawn is set
to a large enough number 10,000. In fact, the experiments later
will show that a successful attack only takes 80 to 2,800 processes
depending on the device specifications.

The PoC apps are verified on 19 smartphones and 2 smart TV
boxes. We manage to cover all the 6 major versions we analyzed
using Google Nexus and Pixel series. Besides Google phones, we
also test other models running vendor-customized Android systems,
such as Samsung, Huawei, etc. In addition to smartphones, there are

1Please refer to the following link for detailed risky commands from the 6 major
Android versions, https://goo.gl/Qjtmbp

https://goo.gl/Qjtmbp


Table 1: The critical system services monitored by watchdog in different Androids versions.

Android OS Version Monitor Services Number

Android 4.2 ActivityManagerService, WindowManagerService, PowerManagerService, InputManagerService,
NetworkManagementService, MountService 6

Android 5.1
ActivityManagerService, WindowManagerService, PowerManagerService, InputManagerService,
NetworkManagementService, MountService, PackageManagerService, MediaRouterService,
MediaSessionService, MediaProjectionManagerService

10

Android 6.0.1
ActivityManagerService, WindowManagerService, PowerManagerService, InputManagerService,
NetworkManagementService, MountService, PackageManagerService, MediaRouterService,
MediaSessionService, MediaProjectionManagerService

10

Android 7.1.1
ActivityManagerService, WindowManagerService, PowerManagerService, InputManagerService,
NetworkManagementService, MountService, PackageManagerService, MediaRouterService,
MediaSessionService, MediaProjectionManagerService, TvRemoteService

11

Android 8.0
ActivityManagerService, WindowManagerService, PowerManagerService, InputManagerService,
NetworkManagementService, StorageManagerService, PackageManagerService, MediaSessionService,
MediaRouterService, MediaProjectionManagerService, TvRemoteService

11

Android 9.0
ActivityManagerService, WindowManagerService, PowerManagerService, InputManagerService,
NetworkManagementService, StorageManagerService, PackageManagerService, MediaSessionService,
MediaRouterService, MediaProjectionManagerService, TvRemoteService, PermissionManagerService

12

Table 2: Synchronized objects and their invoking methods
in the critical services monitored by the watchdog.

{S } {O } {M1direct } {M1indir ect }

ActivityManagerService 16 324 137
InputManagerService 6 27 8

MediaProjectionManagerService 1 10 8
MediaRouterService 2 16 12
MediaSessionService 1 22 8

NetworkManagementService 6 29 12
PackageManagerService 6 217 142

PermissionManagerService 2 18 8
PowerManagerService 3 55 11
StorageManagerService 4 36 19

TvRemoteService 1 2 1
WindowManagerService 4 150 44

Total 52 906 410

two smart TV boxes running Android 4.4 and 6.0. Table 4 shows our
testing results. All test devices with corresponding clean systems
are successfully attacked by all of the attack PoC applications of that
version. Generally, the attack PoC apps take effect within 5 seconds
despite small differences among different testing devices. It means
that the vulnerability is, in fact, affecting a very large range of
Android devices from 4.2 to the latest 9.0 which contribute to 99.7%
of the whole Android devices [9]. Section 5 provides more details
about PoC apps and the attack demos which are publicly available
on Google Play and Youtube. We also test the minimum number
of native processes that a successful attack requires on specific
devices. We can see from the column “Min # Persistent” and “Min
# Unsupported” in Table 4 that the minimum numbers vary a lot
from 80 to 2,830 on different devices. These numbers provide us a
practical threshold when we discuss the defense approaches later

in Section 6. We can see that the “Min # Persistent” values are much
less than “Min # Unsupported” values, which are explained in detail
in Section 4.2.

4.2 Vulnerability Observation and Analysis
During the evaluation, there are two interesting observations.

Observation #1. Readers may have noticed that in Table 3, not
all of the risky commands identified from the Android command
source code are available in the Android system. According to our
experiments, even though the command source code indeed exists,
some commands cause the command-not-found error. However,
we found that all of the identified commands can achieve a similar
attack consequence.

In order to figure out the underlying reason, wemanually analyze
the attack trace and reveal that the underlying causes are different
despite the undifferentiated attack consequences. The analysis is
based on the Android watchdog log information. The Android
watchdog dumps the traces which help us to identify the causes of
the system reset. The error messages vary in different situations.
The error message can be “blocked in handler” or “blocked in
monitor”. The first means there is an overtime situation occurs,
while the latter indicates a deadlock. The causes are explained
according to different command categories.

Persistent commands. Among the commands NativeX has identi-
fied, there are some persistent commands that reside in memory
after started, for example, top. Under the attack using persistent
commands, the error messages are non-deterministic. There are
both “block in monitor” and “block in handler” in the log, which
means there are sometimes deadlock and sometimes overtime
situations. When the PoC application invokes such persistent
commands, the persistent commands directly occupy the shared
system storage resources that only support the mutually exclusive
operation, i.e., some system directories, so that the critical system



Table 3: Risky command statistics in Android versions from 4.2 to 9.0.

Android OS Version Storage resources # Risky
commands

# Available
in Android

# Total
commands

Android 4.2 /data, /proc, /system, /sys, /d 15 14 96
Android 5.1 /data, /proc, /system, /sys, /d, /vendor 15 14 91
Android 6.0.1 /data, /proc, /system, /sys, /vendor, /storage, /dev, /mnt 52 30 253
Android 7.1.1 /data, /proc, /system, /sys, /vendor, /storage, /dev, /mnt 50 28 257
Android 8.0 /data, /proc, /system, /sys, /vendor, /storage, /dev, /mnt 55 31 262
Android 9.0 /data, /proc, /system, /sys, /vendor, /storage, /dev, /mnt, /product 50 29 269

Table 4: Vulnerability verification results. The testing devices include 19 smartphones and 2 smart TV boxes. “Min # Persistent”
and “Min # Unsupported” indicate the required number of processes to succeed an attack using a persistent command and an
unsupported command, respectively.

Device Model System Version Affected Min # Persistent Min # Unsupported x times more

Pixel 2 Android 9.0 and 8.1 ✓ 1510 5530 3.66
Pixel Android 8.1 ✓ 1280 5090 3.98

Pixel XL Android 8.1 and 7.1 ✓ 1280 5090 3.98
Nexus 6P Android 7.1 ✓ 840 3600 4.29
Nexus 5X Android 6.0.1 ✓ 560 3490 6.23
Nexus 5 Android 5.1 and 4.2 ✓ 450 2210 4.91
Xiaomi 6 MIUI 10.0 (Android 8.0) ✓ 1640 6270 3.82
Xiaomi 4 MIUI 8 (Android 6.0.1) ✓ 480 2370 4.94

Xiaomi Note MIUI 8 (Android 6.0.1) ✓ 750 3250 4.33
Huawei nova 2 EMUI 8.0 (Android 8.0) ✓ 2830 7600 2.69
Huawei P8 EMUI 3.1 (Android 5.0) ✓ 800 3520 4.40

Smartisan Pro2 Smartisan OS 6.1.1 (Android 7.1.1) ✓ 1170 3960 3.38
Smartisan Pro Smartisan OS 3.7.3 (Android 7.1.1) ✓ 960 3040 3.17

Samsung Galaxy Note4 Android 6.0.1 ✓ 720 2490 3.46
Meizu Meilan Note3 Flyme 6.1 (Android 5.1) ✓ 600 2020 3.37

Meizu Meilan2 Flyme 4.5 (Android 5.1) ✓ 450 1770 3.93
Coolpad 7270 Android 4.2.2 ✓ 80 500 6.25

Tencent 1v Android 6.0 ✓ 350 2100 6.00
Skyworth T2 Android 4.4 ✓ 190 1680 8.84

services are starved and blocked. Also, we suspect that sometimes
the attack leads to the computing resource exhaustion due to
the large number of running processes. The log message from
the Android watchdog depends on which situation triggers the
watchdog first.

Non-persistent commands and unsupported commands.Apart from
the persistent commands, the rest commands are non-persistent
commands and the unsupported commands.We classify them as one
category because they share the same underlying reason in causing
a system failure. Both of them cannot occupy system or device
resources for a long time. The non-persistent commands exit once
the task is completed, and the unsupported commands exit once the
command is alerted unsupported. Taking advantage of the weak
management of the native process, the PoC app can fork a large
number of the processes running such commands. Under the attack
using this category of commands, the error messages are generally
“block in handler”, which means the Android watchdog monitors
the overtime situation first. We conjecture that a large number of
processes lead to the surge of the number of folders and files in the
storage resources, e.g., /proc, which slows down the access from

critical system services, e.g., traversing the directories to gather
process information. Andmost importantly, these processes exhaust
the device computing resources, which leaves limited computing
resources to critical system services. Both situations make the
operation in critical services exceed the watchdog preset time, and
finally trigger the recovering process.

To better understand the different effects of the persistent com-
mands and non-persistent/unsupported commands, we compare
the required number of processes to launch a successful attack
using a risky persistent command and an unsupported command,
respectively. The results can be found in the last three columns
in Table 4. We can see that it requires much fewer processes to
launch an attack using persistent comparing to using unsupported
command. The last column shows how many times more processes
it requires using unsupported commands than using persistent
commands. This experiment helps to understand the different
contributions of the two different types of commands. It also
indicates that occupying the system resources is more effective
than exhausting the device computing resources when launching
such an attack.



Observation #2. The second interesting observation is watch-
dog’s failure in recovering the system from the attack in Android
8.0 and 9.0. Android is able to reboot itself from the freeze in
versions lower than 8.0, however, Android systems with version
8.0 and 9.0 are prone to be frozen forever until a manual reboot
by long pressing the power button. Watchdog is the last defense
to ensure the running of the Android system. In case any failure
that delays the operation in the critical service to make it exceed
the preset timer, watchdog kills the whole system server to go
through a soft-reboot. One would wonder why it kills the whole
system server instead of the relevant service process. In fact, it has
been pointed out that such design can be utilized to maliciously
shut down the system server by tricking the watchdog to reboot
the Android (version 4.0 to 5.0.2) userspace including the system
server, the Zygote and other processes [22]. We speculate that
from Android 8.0, there is an improvement in such design that the
watchdog thread no longer blindly kills the whole system server.
This speculation is based on the system log information which
shows tremendous effort in restarting the dead critical services but
all are unfortunately end up with “start timeout”. This effort is not
sufficient to recover the system from our attack, which means that
the frozen system is out of service until the battery is empty unless
there is human interruption forcing a reboot. If the device does not
have a battery, such as the TV box, it requires to unplug the device
to shut down the system forcibly. This observation motivates us to
explore more about attack consequences later in Section 4.3, which
reveal fruitful findings.

4.3 Quantitative Attack Consequences
This section demonstrates the quantitative measurement of the
attack consequences exploiting the identified vulnerability. We
select Google phones Pixel and Pixel 2 as the testing devices
according to the Google vulnerability reward program.

4.3.1 Temperature Surge. Different from the existing DoS attacks
on Android systems that would lead to an automatic system
recover [22], we notice that the late Android versions 8.0 and 9.0
fail in automatically recovering from our attack. This observation
motivates us to explore the attack consequence due to the long-
time system freeze. One of the immediate effects is that the device
temperature significantly rises compared to that under the normal
condition. In this subsection, we conduct experiments to measure
the surface temperature of the Google Pixel under both normal
conditions and attack conditions.

Under the attack condition, the testing device runs one of the
PoC applications that would lead to a system freeze, whereas under
the normal condition, it runs an endless loop of AES encryption
and decryption which simulates the processing load of normal user
operations. For each condition, we measure both temperatures
when the device is connected to a charger and when it is not.
All the other running settings are identical for both normal and
attack conditions, for example, the screens are both lighted and
the air temperatures while testing are both 28 °C. The temperature
of the device surface is measured using a contactless industrial
infrared thermometer (Hong Kong Xima AS380). We record the
device temperature at its front center or back center whichever is
higher.

We run the test for 3 hours and record the temperatures during
the whole test. Each test condition is repeated 10 times for us to
obtain an average temperature value. The results are shown in
Figure 2. We can see that under the normal condition, the device
temperature maintains a stable level during the whole test and
reaches no more than 45 °C even if the device is constantly running
heavy computing tasks, i.e., AES encryption and decryption.
However, under the attack condition, the device temperature
continuously rises as time goes on and reaches as high as 60 °C
after 3 hours of testing. The measurement at 180 minutes is not
available for “attack not charging” condition, because the attack
has drained the battery before reaching 180 minutes. Regarding the
influence of the charging, given the same normal/attack condition,
the temperatures for charging and not charging are generally
similar, which implies the influence to device temperature from
charging is negligible.

0 5 10 20 30 60 120 180
Normal	Charging 31.26 41 42.02 43.08 43.38 44.3 44.66 44.64

Normal	Not	Charging 31.14 38.1 40.1 41.84 42.72 44 44.14 44.14

Attack	Charging 31 44.92 47.82 50.9 53.28 56.18 58.34 59.84

Attack	Not	Charging 30.7 45 47.2 50.46 52.4 55.5 58.3
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Figure 2: Device temperature measurements.

4.3.2 Persistent Battery Degeneration. Since Android cannot au-
tomatically recover from the attack freeze, it is feasible to observe
the gradual impact on the device from the long-term attack. In this
experiment, we attack the charging devices for 7 hours per day
(simulating the scenario that the attack happens when the device is
charging overnight) and 20 days in total. After every 7-hour attack,
we reboot the system to stop the attack application and start our
battery life measurement experiments. For the rest of the day, we
leave the device standby in normal condition.

The battery life is measured as the time it takes from the full
battery charge to auto power off. We keep the screen on and run
the same application, which has an endless loop of AES encryption
and decryption, on all the testing devices to simulate the user usage.
We have two sets of devices under test, one set is under attack
and the other is under normal use. Each set has two models, i.e.,
Google Pixel and Google Pixel 2. In order to provide a clear view of
the comparison, we normalize the battery life to [0,1] for each set,
i.e., Pixel and Pixel 2, respectively. The results are demonstrated in
Figure 3. After 20 days of normal use, the battery lives of the two
device models do not change much. In comparison, it can be seen
that battery life is reducing gradually since the attack is launched.
After 20 days of the attack, the battery life of Pixel reduces 13% (29
minutes) and Pixel 2 reduces 22% (54 minutes), which indicates that
the battery life is reduced significantly under continuous attacks.
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Figure 3: Battery life changes under attack or normal use
for 20 days. The vertical axis is normalize to [0,1] for two
devices, respectively.

4.3.3 Persistent Computing Performance Decrease. This experiment
is to measure the potential impact on the computing performance
when the device is under attack for a period of time, i.e., 20
days in our setting. The setting of this experiment is the same
as the previous battery degeneration experiment in Section 4.3.2.
The test devices are rebooted before every measurement. The
computing performance is measured by the processing time of
running a program piece. The shorter the time it takes, the better
the performance is. The device is charging during the performance
measurement to avoid the influence of the battery level. In our
experiment, we run AES encryption/decryption 1000 times and
measure its time cost. Figure 4 illustrates the results of the two
models, i.e., the Pixel and Pixel 2, after days of attack and normal
use. We can see from Figure 4 the fluctuation in the processing
time for both models under normal use is tiny. In contrast, when
the device is under attack, the processing time increases generally
as the attack carries on. The decrease in milliseconds of running
the test program piece may be negligible to humans, however, it is
worth noting that the decrease is about 10% in 20 days. Though we
have observed the decrease in computing performance, it is difficult
to pinpoint the root of the decrease in computing performance
because the computing performance is determined by a number of
factors such as CPU and RAM.
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(a) AES 1000 times on Pixel.
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(b) AES 1000 times on Pixel 2.

Figure 4: The device computing performance under attack
and normal use measured by the processing time of AES
encryption/decryption (1000 times) on Pixel and Pixel 2.

5 POC ATTACKS AND HAZARDS
In this section, we analyze the potential hazard of the identified
vulnerability by engineering several representative PoC attacks,
including the attack scenario, the design of the attack, as well as the
consequences, which demonstrate the easily-exploitable nature of
the identified vulnerability. The PoC attack apps have successfully
passed the security screening mechanism in the Google Play 2.

5.1 DoS Attacks against Android System
Besides dominating 85% of smartphone market share [12], Android
systems are also widely used in IoT devices and critical tasks, such
as medical devices and on-vehicle/aircraft devices. Any failure, no
matter temporary or long-term, in the critical tasks could lead to
severe consequences which could be a matter of life and death
in some of the applications. Unfortunately, one straightforward
way to exploit the vulnerability identified by NativeX is to perform
DoS attacks. The critical tasks performed in the system could be
suspended by a system freeze or a system soft-reboot, which makes
the identified vulnerability an ideal tool for sabotaging attackers
especially the ransomware attackers. The severe consequences of
DoS attacks may seem alike, the DoS attacks leveraging on our
newly-discovered vulnerability is stealthier since it does not require
any permission above the “normal” level.

Attack PoC design and attack consequences. Android
broadcasts an Intent message including a system-defined action
string android.intent.action.BOOT_COMPLETED when the sys-
tem has finished booting either from a soft-reboot or a complete
restart. The PoC is designed to listen to the booting broadcast by
registering a broadcast receiver. A sabotaging attacker can start the
attack once the PoC app gets notified that the system has finished
booting. For a ransomware attacker, he/she can instead pop up
an activity with his/her ransom payment information before the
launch of the actual attack. The activity can also be designed in a
manner that the PoC app would exit if the device owner has paid
the ransom, otherwise launch the attack. Both sabotaging attack
and ransomware attack will not allow the user to interact with the
system3.

5.2 DoS Attacks against Android App
By exploiting the identified vulnerability, an attacker is able to
disturb the functioning of a victim app that has already been
installed on the device. This is a type of highly targeted attack.
The DoS attack is triggered only when the user is performing a
certain operation or interacting with a certain app. It is difficult
to detect the source of such an attack since it is triggered by the
legitimate behaviors of the victim app and it requires no specific
permission for the attack app to receive the trigger timing. From
the user’s perspective, it would appear as the system freezes or
reboots once the user intends to interact with the victim app. In
this case, an attacker, e.g., a vicious app competitor, may purposely
launch such an attack against its rival to frame the rival app and
further mislead the user to uninstall the rival app.
2The PoC apps are available in the following link: https://play.google.com/store/apps/
details?id=com.hou.ndkdemo. We clearly mark this app as an academic PoC for a
research paper to avoid misleading normal users.
3The DoS attack against the Android system demo is available at https://youtu.be/
VmvJW-6rGmQ

https://play.google.com/store/apps/details?id=com.hou.ndkdemo
https://play.google.com/store/apps/details?id=com.hou.ndkdemo
https://youtu.be/VmvJW-6rGmQ
https://youtu.be/VmvJW-6rGmQ


Attack PoC design and attack consequences. Instead of
listening to the system booting broadcast, this PoC listens to the
broadcast from the victim app. It requires that the target app sends
any broadcast that can be received by other third-party apps, which
is in fact very common in Android apps. Apps usually send out
implicit broadcasts to notify other apps on the same device of its
operation or status, such as the app launch and the user login. The
PoC app thus can register a receiver to receive the broadcast from
the target app. If the broadcast is protected by permission (not at the
signature level), the receiver app needs to apply for the permission
and easily tricks the user to approve the permission application [34].
Otherwise, no permission is required. The PoC app is designed in
the way that it launches the attack once its receiver receives the
broadcast from the victim app.

We have conducted a preliminary experiment to verify the above
attack design using popular apps with billions of downloads. The
apps and their broadcasts that can be used by the attack PoC are
listed in Table 5. The metadata of the app is from the Tencent App
Store which is one of the largest app stores in China. We only list
the broadcasts that are triggered by user operations in Table 5. By
listening to different broadcast actions, the attack can be launched at
different points, for example, when the user is in the login process.
When the attack PoC launches DoS attack upon receiving such
broadcasts, it gives users the impression that it is some function in
the victim app that causes the system to freeze and reboot, such
as logging in the app. This attack disturbs the users when they are
interacting with the victim app, and further mislead the users to
uninstall the victim app4.

5.3 Physical Harm to Users
The experiments in Section 4.3.1 reveal that the temperature of the
device under attack reaches as high as 60 °C when the environment
temperature is 28 °C. However, the environment temperature could
be much higher than our controlled environment temperature 28 °C.
For example, one case could be that an Android smartphone is in an
enclosed space such as a car parking in the summer sun (the in-car
temperature can reach up to 70 °C, after parking in the sun on a 38 °C
day [4]), or surrounded by daily thermal insulation materials such
as under a pillow in the bed. In such cases, the device temperature
under attack might be even higher than 60 °C which may not be
immediately but potentially cause physical harm to users.

Attack PoC design and attack consequences. This PoC app
is designed to overheat the victim Android device to cause any
harm to the device or users. Android provides temperature sensor
APIs for apps to acquire temperature. The PoC app first creates
an instance of the SensorManager and use the sensor manager
instance to further get an instance of a temperature sensor. After
registering a sensor listener, the PoC app can start handling the
sensor data in the onSensorChanged() callback. The PoC app has a
preset temperature threshold, reaching which will trigger the attack.
We have not conducted repeat attack experiments to get an average
device temperature as we have done in Section 4.3.1 to avoid any
harm from the overheat. We do have a test when the environment
temperature is 42.9 °C which is the temperature on a hot summer

4The DoS attack triggered by Taobao login broadcast is demoed in the link: https:
//youtu.be/HJR_r4DH-DE

day. After 200 minutes attack, despite the CPU throttling technique
in modern CPUs, the device temperature still reaches 70.4 °C 5. The
temperature is far beyond the suggested charging (0 °C to 45 °C)
and discharging temperature (-20 °C to 60 °C) of the lithium-ion
batteries [2]. Not to mention the degeneration to the battery [33],
the overheat is also able to suffer users from burns [8].

6 DEFENSE APPROACHES
One way to stop this type of attack is to remove the attack app
from the system. Android safe mode is such a special runtime
environment where no third-party app is allowed to run so
that users can uninstall any identified attack app without any
attack interference. Unfortunately, it is usually a challenging task
for ordinary users to recognize the attack app. The attack app
can disguise itself as a functional app. It may launch attacks
intentionally on various occasions. Other than the occasions we
explained in Section 5.1 and Section 5.2, the attack apps can be
triggered by other permission-free indicators, such as a preset time,
battery level, or system running time, which makes it difficult for
users to identify the sources of such attacks. Alternatively, a factory
reset, which may erase all the useful applications and data, can
stop the attack, however, at the cost of unnecessary labor work to
restore the previous system settings and user data. Therefore, it
is preferred to solve the problem by amending the management
mechanism for native processes instead of burdening users with
the professional security challenge.

Due to the weak management of the native processes, any app
can starve or slow down the critical system services by invoking
the Android commands that share the system resources with these
services in its native processes. Native programming is an effective
method to achieve extra performance as well as to defend the core
algorithm against reverse engineering. The native API used in the
attack PoC app, i.e., system(), is widely used in command-line
shell apps. It is recommended to regulate the usage of such native
APIs instead of crudely forbidding them. In this section, we briefly
discuss the possible defense approaches from the Android system
angle.

Introduce Permission Control. Unlike the established per-
mission control in the framework programming, there is no
such control on the NDK programming. As a consequence, any
application can invoke any native API without any restriction. We
suggest introducing permission control to the native APIs, which
follows the uniform security mechanism in the framework layer.
Similarly, the app that intends to issue Android commands via
framework APIs, e.g., Runtime.getRuntime().exec(), or native
APIs, e.g., system(), shall request for the corresponding permission
before such operation. On one hand, permission control is able
to restrict the usage of the target APIs/resources by informing
the system as well as the users of such access. On the other
hand, it provides extra permission information to conduct malware
detection using the traditional permission-based approach.

On the downside, users may not understand the concept
of permission controlling the execution of commands, which
may require the specification of such permission to be intuitive.
Moreover, introducing extra permission control to the native layer,

5The overheat attack demo video is available at: https://youtu.be/kZbCWNlKARA
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Table 5: DoS attack against popular apps. The listed broadcast actions can be used to trigger the DoS attacks.

App Version Downloads Last updated Broadcast actions that are triggered by user interactions

Taobao V8.10.0 2.8 billion 30/7/19 TAOBAO_DELAY_START_LOGIN

Wechat V7.0.6 7.9 billion 26/7/19 com.tencent.mm.plugin.openapi.Intent.ACTION_REFRESH_WXAPP

QQ V8.1.0 9 billion 30/7/19 com.tencent.mobileqq.msf.startmsf

Sina Weibo V9.8.0 2.3 billion 31/7/19
sina.weibo.action.UPDATED

com.sina.weibo.guardunion.NEW_DATA
com.sina.weibo.photo.action.UPDATE_VIDEO_CONFIG

iQiyi V10.7.0 2.5 billion 23/7/19
com.iqiyi.hotchat.user.login

org.qiyi.video.module.action.REGISTRY
com.aiqiyi.shortvideo.database

Youku V8.0.5 1.9 billion 23/7/19
com.youku.service.download.ACTION_DOWNLOAD_SERVICE_CONNECTED

com.youku.action.GET_INIT_DATA_SUCCESS
com.youku.phone.home.loadfinish

NetEase Music V6.3.0 200 million 29/7/19 com.netease.cloudmusic.action.UPDATE_CRASH_HANDLER_USERID
com.netease.music.action.STAR_MUSIC

Ctrip V8.8.0 330 million 30/7/19 ctrip.location.coordinate.success

which is brand new to the Android system, may bring extra
performance overhead to the system. And similar to every previous
permission update, it would require the app developers adapting
their apps to the new permission update.

Restrict the Number of Native Processes. According to our
vulnerability analysis, an app is able to spawn an unlimited number
of native processes so that it can starve the system service or slow
down the entire system to freeze the system or force a system
reboot. A straightforward but effective approach is to control the
maximum number of native processes that an app can spawn so
that the attack app cannot have enough number of running native
commands to continuously occupy the shared system resources or
exhaust the device computing resources. It is a usual way adopted
by Android, for example, the maximum number of Toasts that an
app can pop is 50 [34], and the maximum number of active locks
an app can create is also 50 [21].

We conducted a brief study by randomly selecting 50 apps
from the top 500 apps in Google Play and counting up the native
processes in these apps. According to the statistics, the number of
native processes that an app has is normally less than 10. Therefore,
it is relatively easy to set a reasonable threshold of the maximum
number of native processes that a third-party app can spawn.
According to Table 4, the minimum number of native processes
required by a successful attack is 80. It is on Coolpad 7270 which
is an old model released in 2012. Newer models have much bigger
figures of the minimum native process numbers. Therefore, fifty
would also be a conservative limit in this case based on our extra
defense experiments which demonstrate the PoC app is far from
success on any of our testing device if its number of native processes
is set to 50. For trusted system apps, the threshold can be loosened
if necessary.

Regarding the implementation, Android is ready to impose
such a limit on the number of processes an app can have
using SetRLimits() which is based on the Linux setrlimit().

Android applies SetRLimits() to all the child processes forked from
the Zygote, including all the app processes. We investigate the
maximum number of processes that a third-party app can have.
The limit varies in different versions and models, for example, on
our experiment devices, the limits are 14,096 in Android 7.1, 22,097
in Android 8.1, and 21552 in Android 9.0. The limit numbers are all
much larger than the number of processes required by an attack.
Though the existing limit cannot effectively prevent the attack in
our paper, we could readily configure the parameter of this function
to provide a tighter and reasonable limit.

Compared to the permission-based solution, restricting the
number barely brings any burden to the Android system. It requires
no specific adaption from either app developers or app users. This
may explain why it is preferred by system patches and previous
research works [34][21]. A potential problem may come from the
exact limit number. Even though the statistic analysis on the top-
ranked apps shows that 50 would be a suitable number that would
not affect these apps, it may require cautious confirmation of such
statistical observation.

7 RELATEDWORK
Android DoS Attacks. As a prevailing mobile system, Android
has been widely explored by researchers to exploit any vulnerability
in the system to launch DoS attacks. The attack points can be
generally categorized into two layers according to the Android
system architecture. One category of attack points are from the
Android framework layer, which is based on the exploits of system
services or system components. For example, there are DoS attacks
exploiting the lack of input validation [16], the inconsistent security
enforcement within the Android framework [29], the design trait in
the concurrency control mechanism of the system server [22], the
vulnerability in the call back mechanism in system services [31], as
well as the lack of access control and memory usage limit in various
ION heaps [35]. Also, there are attacks that can force the process



abort and trigger the system reboot via IPC flooding [20], JGR
(JNI Global Reference) exhaustion [21], and Toasts flooding [24].
The other attack point category is to launch DoS attacks from the
native layer. Armando et al. take advantage of a security breach in
permission management of the Zygote socket so that any process
can request the Zygote process to spawn unlimited new processes
and finally exhaust the system resources [13].

The consequences of a DoS attack may seem alike, the root
causes of the vulnerability are totally different. The vulnerability
identified in our work distinguishes itself in a way that exploits
the weak management of the Android native process. And the
showcased attacks represent the first exploration taking advantage
of the legitimate Android commands as attack vectors. Besides DoS
against the system, we also design the attack against target apps,
which has not been explored before to the best of our knowledge.
Moreover, we quantitatively evaluate the attack consequences
caused by this vulnerability, i.e., temperature surge, battery
degeneration, and computing performance decrease.

Android Static Analysis. The open-source nature of
Android enables the static source code analysis to be one of the
most prominent analysis methods in analyzing the system itself
and its apps. In the Android application analysis area, the previous
work uses static analysis to detect the component hijacking
vulnerabilities in Android apps [26], identify the security and
privacy issues in Android apps [25] and in advertisement libraries
used in Android apps [18], and reveal the capability leaks in stock
smartphones [19]. There are also general application analysis frame-
works, such as FlowDroid [14], Amandroid [32] and EPICC [27].
FlowDroid is an effective static taint analysis framework for
Android applications, which can achieve precise context, flow, field,
and object-sensitive taint analysis [14]. Amandroid is another static
application analysis tool for determining points-to information for
all objects in Android applications and context-sensitive functions
across Android applications components [32]. Besides analyzing
apps, there are also static analysis tools for system vulnerability
analysis based on the Android source code [20][21][22][29][35].
SUSI is proposed to leverage a machine-learning guided approach
to classify and categorize sources and sinks in the framework layer
and pre-installed apps [28]. Backes et al. build a static runtime
model of the Android framework to analyze its internals and find
the high-level protected resources so as to reveal the influence on
the platform security and user privacy [15]. We can see that the
static analysis achieves a large range of purposes. Thanks to statistic
analysis, NativeX can highly target the risky points in the Android
system, saving a lot of labor inspection work.

8 CONCLUSION
This work reveals a new vulnerability existing in a wide range of
Android versions from 4.2 to 9.0 due to the weak management
of native processes. Exploiting this vulnerability, we take the
first exploration using legitimate Android commands in native
processes as attack vectors, such that any third-party app without
any permission can freeze the system or force the system to reboot.
We design an integrated analyzing and testing tool named NativeX,
to identify the risky Android commands, construct PoC apps, and
verify the effectiveness of the PoC apps. We quantitatively measure

the attack consequences of attacks exploiting this vulnerability,
including device temperature surge, battery degeneration, and
computing performance decrease. We further present three repre-
sentative attacks to explain the hazards to the Android system,
Android on-device apps, and device users. Finally, we conduct
vulnerability analysis and reveal the root causes of the vulnerability,
based on which, we discuss the defense approaches against such
vulnerability.
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